Гидриды фуллеренов: получение, свойства, структура

Н.Ф.Гольдшлегер, А.П.Моравский

Институт химической физики в Черноголовке Российской академии наук 142432 Черноголовка, Московская обл., факс (096)515–3588

Обобщены результаты исследований методов получения экзоэдральных гидридов фуллеренов, в том числе восстановление фуллеренов углеводородами, каталитическое гидрирование фуллеренов и др. Значительное внимание уделено состоянию водорода в твердых гидридах фуллеренов, структуре гидридов фуллеренов и их реакционной способности. Библиография — 148 ссылок.

Оглавление

I.	Введение	353
II.	Методы получения гидридов фуллеренов	354
III.	Свойства гидридов фуллеренов	364
IV.	Заключение	371

І. Введение

Фуллерены являются уникальными молекулами, их реакционной способности посвящены многочисленные работы (см., например,¹⁻⁴). Так, С₆₀ проявляет высокую активность в отношении нуклеофилов,^{1,5-9} свободных радикалов^{4,10} и галогенов,¹¹ участвует в реакциях циклоприсоединения, в том числе фотоциклоприсоединения антрацена.¹² Обычно в результате этих реакций образуется набор трудно разделяемых продуктов, сохраняющих сферическую структуру С₆₀. К превращениям, протекающим селективно, относятся реакции осмилирования, 13 синтез эпоксидов фуллеренов 14-16 и фуллероидов с дифенилметиленовым фрагментом.¹⁷ Реакции присоединения комплексов металлов к С₆₀ и С₇₀ контролируются стехиометрией процесса и пространственной загруженностью комплекса. 18-22 Формирование комплексов фуллеренов с низковалентными электронодонорными металлическими центрами, таких как $(Ph_3P)_2Pt(\eta^2-C_{60})$, $[(Et_3P)_2M]_6(\eta^2-C_{60})$ (M = Pt, Ni), $(\eta^2-C_{60})IrCl(CO)(PPh_3)_2$. $\cdot 5C_6H_6$, $(\eta^2$ - $C_{60})RhH(CO)(PPh_3)_2$, $(\eta^2$ - $C_{60})Ru(CO)_4$ и др., в которых фуллерен выступает в качестве η²-лиганда, свидетельствует о том, что двойные связи остова фуллерена являются электронодефицитными. Так, степень переноса электрона от металла в аддукте (η²-С₆₀)Ir(CO)Cl(PPh₃)₂ подобна наблюдаемой в дикислородном комплексе, O₂Ir(CO)Cl(PPh₃)₂.²¹ Расчеты электронной структуры С₆₀^{23,24} подтвердили, что *п*-система молекулы является

Н.Ф.Гольдшлегер. Кандидат химических наук, старший научный сотрудник лаборатории синтеза электропроводящих и каталитически активных соединений ИХФЧ РАН. Телефон 524–5034 Область научных интересов: активация С–Н-связи комплексами переходных металлов, химия фуллеренов.

А.П.Моравский. Кандидат химических наук, заведующий группой кинетики и механизма реакций фуллеренов ИХФЧ РАН.

Область научных интересов: металлокомплексный катализ, активация С – Н-связи, химия фуллеренов.

Дата поступления 25 сентября 1996 г.

электронодефицитной, при этом фуллерен ведет себя, скорее, как полиолефин, а не как ароматическое соединение.

В структуре С₆₀ (симметрия *I_h*) имеется два типа связей С-С: более короткие двойные связи, являющиеся общей стороной двух шестигранников (далее 6-6-связи),[†] и более длинные одинарные, являющиеся общей стороной шестигранника и пятигранника (6-5-связи).^{25,26} В структуре С₇₀ (симметрия D_{5h}) присутствуют пять типов углеродных атомов и соответственно восемь типов связей С-С. Четыре из них являются общими сторонами шестигранников, в то время как другие четыре образуются при слиянии пяти- и шестичленных колец.²⁰ На рис. 1 приведены длины 6-6- и 6-5связей в молекуле С₆₀, а на рис. 2 — схематические диаграммы Шлегеля для C₆₀ и C₇₀.²⁷ Для фуллеренов C₆₀ и C₇₀ наиболее реакционноспособными являются 6-6-связи, и именно присоединение по этим связям реализуется при взаимодействии фуллеренов с комплексами переходных металлов (см., например, 18-22).

Рис. 1. Длины 6-5- и 6-6-связей и их положение в молекуле С₆₀.

Простейшим методом химического модифицирования фуллеренов является гидрирование их двойных связей. Восстановление фуллеренов представляет большой интерес, поскольку они могут быть эффективной средой для хранения водорода.²⁸ Теория предсказывает, что атомы водорода могут располагаться как внутри (эндоэдрально), так и сна-† Нумерацию атомов см. в работе²⁷.

УДК 541.67:541.142

Рис. 2. Диаграмма Шлегеля для фуллеренов C₆₀ (*a*) и C₇₀ (*b*) с нумерацией атомов углерода.²⁷

ружи (экзоэдрально) сферы фуллерена, причем устойчивый изомер $C_{60}H_{60}$ может быть получен только в том случае, если 10 атомов Н будут связаны в молекуле эндоэдрально. В химии фуллеренов для получения разно-образных соединений, в том числе и гидрированных производных, используются традиционные методы органической химии.

Целью настоящего обзора является обобщение имеющихся литературных данных по методам получения, изучению структуры и реакционной способности экзоэдральных гидридов фуллеренов. Имеется несколько обзоров и монографий, в которых частично затрагивается проблема гидрогенизации новых углеродных кластеров (см., например,^{2, 3}), однако быстрое развитие исследований в этой области требует их специального рассмотрения и систематизации.

II. Методы получения гидридов фуллеренов

1. Восстановление фуллеренов по Берчу

Фуллерен С₆₀ может быть восстановлен по Берчу – Хюккелю. Продукт восстановления по данным тонкослойной хроматографии (TCX, CH₂Cl₂: гексан = 1:3, $R_f = 0.37$) соответствует единственному соединению.²⁹ При нагревании полученное (белое или кремовое) вещество начинало темнеть при 170°С, но не плавилось до 305°С. $C_{60} \xrightarrow{\text{Li, NH}_3(\mathfrak{K}), \text{ButOH}} C_{60}H_{2n}$.

Масс-спектральный анализ с ионизацией пробы методом электронного удара (ЭУ-МС) показал наличие двух компонентов с *m*/*z* 756 (М⁺) и 378 (М²⁺), а также 738 (М⁺) и 369 (M^{2+}) , что согласуется с формулами $C_{60}H_{36}$ и $C_{60}H_{18}$ соответственно (табл. 1), причем С₆₀Н₁₈ может быть как продуктом прямого восстановления С₆₀, так и продуктом пиролиза С₆₀Н₃₆, образующимся в ходе масс-спектрометрического анализа. Тщательное исследование первоначального продукта восстановления с использованием более «мягких» масс-спектрометрических методик показало, что при восстановлении по Берчу образуется смесь полигидрофуллеренов — С₆₀Н₁₈-С₆₀Н₃₆, причем основным продуктом является C₆₀H₃₂.³⁰ Это экспериментально найденное распределение гидридов С₆₀ находится в хорошем соответствии с распределением продуктов, рассчитанным с использованием приближенных методов в предпо-ложении, что при восстановлении по Берчу действительно имеет место 1,4-присоединение к циклогексадиеновым фрагментам C₆₀ (табл. 2).³⁰

Обработка толуольного раствора продукта восстановления фуллерена сильным окислителем — 2,3-дихлоро-5,6дицианобензохиноном (DDQ) — при кипячении приводит к C_{60} . Таким образом, восстановление C_{60} является полностью обратимым и в ходе реакции не происходит разрушения скелета C_{60} .²⁹

Фуллерен С₇₀ в условиях восстановления по Берчу дает в качестве основного продукта С₇₀Н₃₀. Предполагается, что наиболее стабильный гидрид фуллерена получается в результате 1,4-присоединения водорода к двойным связям на поверхности С₇₀.³¹

Источником водорода при восстановлении фуллерена металлическим калием в присутствии краун-эфиров (18-К-6) может служить бензол.³²

2. Восстановление фуллеренов гидридами

Для простейших гидридов фуллеренов (C₆₀H₂ и C₇₀H₂) число термодинамически и кинетически стабильных изомеров мало.

Так, восстановление C_{60} до $C_{60}H_2$ может привести к образованию 23 изомерных дигидридов, два из которых являются продуктами 1,2- и 1,4-присоединения к 6-6 связям и имеют самые низкие значения теплот образования, причем последний изомер на 3.8 ккал моль⁻¹ менее устойчив.³³ Двухстадийный процесс — гидрометаллирование C_{60} и C_{70} с последующим гидролизом, — протекающий с высокой региоселективностью, является удобным способом получения низших гидридов фуллеренов, что демонстрируется на примере синтеза $C_{60}H_2$ и $C_{70}H_2$ через гидроборирование ³³ или гидроцирконирование ³⁴ (схема 1).

Взаимодействие C₆₀ с BH₃·THF в толуоле при 5°C (табл. 1) с последующим гидролизом приводит с выходом 10-30% к C₆₀H₂ — простейшему гидридному соединению фуллерена,³³ которое выделено с помощью высокоэффективной жидкостной хроматографии (ВЭЖХ). Получение стабильного изомера C₆₀H₂ находится в соответствии с расчетами.^{35,37} Спектры ЯМР¹Н для C₆₀H₂, а также C₆₀HD, приготовленного по реакции промежуточного C₆₀HBH₂ (схема 1) с CH₃COOD или D₂O, согласуются со спектрами продуктов реакции гидроалкилирования фуллерена.³⁶ Полученный региоизомер является продуктом 1,2-присоединения по связи 6-6. Как и в случае 1-органо-1,2-дигидрофуллерена,³⁶ протоны дигидрофуллерена C₆₀H₂ дают в спектре ЯМР¹Н

r	J/ I									
Система ^а	Субстрат : реагент	Условия]	реакции		Метод масс-спектро-	Продукты реакции ^с	Физико-химические хар	актеристики гидридов фул	ллеренов	Ссылки
	субстрат : реагент : катализатор)	T,°C	вре- мя, ч	$P_{\rm H_2},$ atm	метрического исследования ^b		УФ- и видимый спектр, <i>λ</i> , нм (растворитель)	ИК, v, см ⁻¹ (отнесение)	ЯМР ¹ Н, ð, м.д. (растворитель)	
					А. Восстановление ф	уллерена С ₆₀ .				
$\begin{array}{c} C_{60}-Li-NH_3(\texttt{\textbf{x}})-\\ Bu^tOH \end{array}$		- 78			ЭУ-МС	C ₆₀ H ₃₆ , C ₆₀ H ₁₈	222 (циклогексан)	2925, 2855 (C – H), 1620, 1450, 1400, 675	2.5–4.2 с макси- мумами при δ 3.8 и 2.25 (СРОССС)	29
C_{60} - Li – NH ₃ (\mathfrak{m}) – THF – Bu ^t OH		- 78			лд-ли-мс, инр-мс. мсви	$C_{60}H_{18}-C_{60}H_{32}$		C/0		30
C ₆₀ –BH ₃ ·THF	1:1	Ś	0.75		BBA-MC	C60H2	207.5, 254, 324, 435 (rekcaн)	1426, 1178, 860 575.5, 574, 566, 552, 550, 545.5, 531.5 и 526.5, 522.5, 517	5.93 (толуол-d ₈)	33
$C_{60}H_2-BH_3\cdot THF$	1:1	0	0.75		BBA-MC	6 изомеров С ₆₀ Н4 (1 2 3 4 С.: н. 5002)	342 mJ, 442			42
$C_{60}-N_2H_2$	1:1000	20	19			$(1,2,2,4-C_{0014} 50\%)$ 1,2-C_{0}H_2 (11), 1,4-C_{6}H_2 (5), 1,2,18,36-C_{60}H_4 (1.5), 1,2,3,4-C_{60}H_4 (10.5)	(101)011.1CRCaH - 1.1)		6.97 (CS ₂); 5.89 (C ₆ D ₆) 7.23 (CS ₂); 6.13 (C ₆ D ₆) 6.38 (CS ₂); 5.49 (C ₆ D ₆) 5.72 (CS ₁): 4.56 (C ₆ D ₆)	38
$C_{60} - \Lambda \Gamma A$	1:120	350	0.5		ПД-МС, ББА-МС, ЭУ-МС	C60H36	230 (CH ₂ Cl ₂) 1169 1076 745	2913, 2850 (C – H), 1733, 1606, 1511, 1257, 1198, 4.0 (CDCl ₂)	2.5-4.2 с максиму- мами при 3.3, 3.7 и	45
С ₆₀ -ДГА-d ₄ С ₆₀ -ДГА	1:120 1:120	350	24		ПД-МС, ББА-МС, ЭМ МС	$C_{60}D_{36}$ $C_{60}H_{18}$		2128 (C – D) 2925, 2897, 2854 (C – H)		45 45
С60-ДГА-К	(1:100:5)	250	7		JW-WC	$C_{60}H_x$ (x = 0-36, 42-44)		2962, 2921, 2853 (C–H)	3.00–4.70 с максиму- мами 4.43, 4.20, 4.00–3.86–3.45 (СРССС)	47
C_{60} – μ ArA-d ₄ –	(1:100:5)	250	4.5			$\mathbf{C}_{60}\mathbf{D}_{x}\left(x=0-36\right)$		2153 (C–D)	1.00, 0.00, 0.10 (0.0013)	47
$c_{60} - H_2$ $C_{60} - H_2 - C_2 H_5 I$		300 - 350 400		500–850 70	ИЦР-МС ББА-МС	$C_{60}H_x (x = 2 - 18)^d$ $C_{60}H_{36}$		2912, 2847, 2827 (C–H), 1666 1460 1026 660		59 61
$C_{60} - H_2 - D_{4/C} + C_{10}$		180		100	ПД-МС	C ₆₀ H ₃₆ , C ₆₀ H ₁₈		2918, 2858 (C-H)	2.5-4.5(CDCl ₃)	80, 81
$C_{60} - H_2 - 5\% Ru/C$		180	7	110	лд-мс	$C_{60}H_{36}$, $C_{60}H_{38}$, $C_{-1}H_{12}$	220 (циклогексан)		2.1-4.25	83
C ₆₀ -H ₂ -5% Ru/C		180	2	130	ПД-МС	$C_{60}H_{42}$, $C_{60}H_{46}$ $C_{60}H_{42}$, $C_{60}H_{46}$				83

Таблица 1. Восстановление фуллеренов С₆₀ и С₇₀.

Система ^а	Субстрат : реагент	Условия	і реакции		Метод масс-спектро-	Продукты реакции ^с	Физико-химические хараі	ктеристики гидридов фул	плеренов	Ссылки
	(Субстрат : реагент : катализатор)	T,°C	вре- мя, ч	$P_{\mathrm{H}_2},$ atm	метрического исследования ^b		УФ- и видимый спектр, 2, нм (растворитель)	ИК, v, см ⁻¹ (отнесение)	ЯМР ¹ Н, δ, м.д. (растворитель)	
С ₆₀ -H ₂ -5% Ru/C С ₆₀ -H ₂ -5% Ru/C С ₆₀ -Zn-кислота		280 180 110	24 6	$120 \\ 20-50$	ПД-МС ПД-МС ББА-МС	$\begin{array}{c} C_{60}H_{42},C_{60}H_{46}\\ C_{60}H_{18}\\ 1,2\text{-}C_{60}H_2,C_{60}H_4,C_{60}H_6 \end{array}$	220, 265 (циклогексан)		3.0-4.5 (CDCl ₃)	83 82 55
С ₆₀ –Zn–конц. НСl		20	1.5		ЭУ-MC	C ₆₀ H ₃₆ (82%),	207, 257, 274.5 276.5, 283.5, 292.5, 300.5, 304.5, 307, 313, 317.5, 320.5, 329	2913, 2849 (C – H) 1725, 1635, 1456, 1384, 1273, 1123, 1073, 1035, 730, 678	2.5–4.2 с максиму- мами при 2.55, 2.95, 3.05, 3.3, 3.5,3.9, 4.0	56
С ₆₀ -Zn-конц. DCl					ЭУ-МС	$\begin{array}{l} C_{60}H_{38}\left(15\%\right),\ C_{60}H_{40}\left(3\%\right)\\ C_{60}D_{36}\left(32\%\right),\ C_{60}D_{38}\left(31\%\right),\\ C_{60}D_{40}\left(22\%\right),\ C_{60}D_{42}\left(11\%\right),\\ C_{60}D_{44}\left(4\%\right)\end{array}$				56
					В. Восстановление д	фуллерена С ₇₀				
$C_{70}-BH_3$ · THF	1:2	25			BBA-MC	$7,8-C_{70}H_2,$ 1.9-C ₇₀ H ₂	375, 410 (толуол – гексан) 355, 410 (толуол – гексан)		3.91 с (толуол-d ₈)	43
$C_{70} - \Pi \Gamma A - K$ $C_{70} - \Pi \Gamma A - d_4 - K - d_2$	(1:100:5) (1:100:5)	250 250	2.5 7		ЭУ-MC ЭУ-MC	$C_{70}H_x (x = 0 - 36)$ $C_{70}D_x (x = 0 - 36)$		2923, 2853 (C–H) 2150 (C–D)	2.80 - 4.60	47 47
$C_{70} - N_2 H_2$	1:1000	20	19			$7,8-C_{70}H_2$ (1) 1,9- $C_{70}H_2$ (25)			4.96 (CS ₂); 3.87 (C ₆ D ₆) 5.32, 4.84 (CS ₂);	38
						$1,3,9,15-C_{70}H_4$ (7) $1.5,6.9-C_{70}H_4$ (9)			4.22, 3.71 (C6D6) 5.312, 4.859 (CS ₂) 4.475, 4.127 (CS ₂).	
$C_{70}-H_2-5\% Ru/C$		100	7	7	ПД-МС	$C_{70}H_2 - C_{70}H_{18},$ $C_{70}H_{36}$ (cinemat)				84
$C_{70} - H_2 - 5\% Ru/C$		180	7	20	ПД-МС	$C_{70}H_{36}$	225(C ₆ H ₁₂)		2.7-4.5 с максимума- ми пои 3 35-3 8 и 4 0	84
С ₇₀ – Zn – конц. HCl		20	1.5		ЭУ-МС	C ₇₀ H ₃₆ , C ₇₀ H ₃₈	207, 223.5, 255, 259, 263, 269.5, 275.5, 278.5,	2909, 2852(C-H), 1730, 1456, 1282, 1126, 1035, 750-730-695-587-468	2.4–4.0	56
					ЭV-MC	$\mathrm{C}_{70}\mathrm{H}_{40},\mathrm{C}_{70}\mathrm{H}_{42}(\mathrm{C}_{70}\mathrm{H}_{44})$	295.5, 300, 303, 309.5, 312.5			
$C_{70}-Zn-конц. DCl$		20			ЭУ- MC	$C_{70}D_{36}, C_{70}D_{42} - C_{70}D_{48}$				56

Таблица 1 (окончание).

масс-спектроскопия вторичных ионов, ББА-МС — масс-спектроскопия с бомбардировкой быстрыми атомами, ПД-МС — масс-спектроскопия с полевой десорбцией; с в скобках приведены соотношения продуктов реакции; ^а не растворяется в большинстве органических растворителей.

Таблица 2. Экспериментальное и расчетное (численное моделирование 1,4-присоединения методом Монте-Карло) распределение продуктов восстановления С₆₀ по Берчу.³⁰

Состав (% от основного пика)	Распределение продуктов полигидро- фуллеренов		
	эксперимента	расчет ь	
C ₆₀ H ₂₄	39(24)	0.2	
$C_{60}H_{26}$	53(35)	3	
$C_{60}H_{28}$	72(57)	19	
C ₆₀ H ₃₀	96(89)	53	
C ₆₀ H ₃₂	100(100)	100	
C ₆₀ H ₃₄	71(62)	98	
C ₆₀ H ₃₆	11(10)	55	
C ₆₀ H ₃₈		14	
$C_{60}H_{40}$		0.3	

^а Приведены данные масс-спектрометрии вторичных ионов, в скобках — данные масс-спектрометрии ионно-циклотронного резонанса с лазерной десорбцией; ^b расчет основывается на восстановлении 20 000 молекул С₆₀.

сигнал при δ 5.9 м. д. (толуол-d₈).³³ В существенно меньшем количестве в этой системе был обнаружен второй устойчивый изомер (б 6.13 м. д.).³⁸ Наличие полосы при 430 нм в электронном спектре поглощения коричневого раствора С₆₀H₂ является характерным свойством 1,2-аддуктов C₆₀.³⁹ Взаимодействие C₆₀ с избытком BH₃ · THF и последующий гидролиз образовавшегося комплекса ледяной CH₃COOH, NaOH-H2O2 или NaOH приводит в присутствии кислорода воздуха к растворимым в воде фуллеролам $C_{60}(OH)_x$. При сравнении ИК-спектров продуктов реакции, полученных в инертной атмосфере и в присутствии кислорода воздуха, найдено, что реакция протекает через окисление связей С-Н первоначально образовавшегося гидрофуллерена.40 Аналогичный процесс наблюдался и при восстановлении С₆₀ тетрагидроборатом тетрабутиламмония в бензоле при комнатной температуре.41

Гидроборирование дигидрида $C_{60}H_2$ (схема 2) приводит к образованию смеси шести изомерных соединений $C_{60}H_4$ с выходом ~ 10%, причем 1,2,3,4- $C_{60}H_4$, в котором все четыре атома водорода присоединяются к соседним 6-6-связям, является, согласно данным ЯМР¹Н, основным (~ 50%) продуктом реакции.⁴² Он является и наиболее термодинамически стабильным изомером.

Схема 2

Взаимодействие C₇₀ с BH₃ · THF (табл. 1, схема 3) происходит в отличие от C₆₀ при комнатной температуре и приводит с ~ 20%-ным выходом к смеси 1,9- и 7,8-C₇₀H₂ в соотношении 2:1, для которых различие в значениях свободной энергии составляет $\Delta G_{295} = 1.4 \pm 0.2$ ккал · моль⁻¹ (см.⁴³).

Согласно расчетам, 37 продукты 1,2-присоединения Н2 к 6-6-связи фуллеренов С₆₀ и С₇₀, и продукты присоединения в пара-положение шестичленного кольца обладают наименьшей энергией. Оба выделенных изомера C₇₀H₂ являются продуктами 1,2-присоединения. Отмечается, что изомеры 7,8- и 1,9-С70Н2 не превращаются друг в друга ни при стоянии при комнатной температуре в течение нескольких недель, ни при нагревании до 100°С в течение 1 ч. Однако в присутствии Pt/SiO₂ при комнатной температуре 7,8-С₇₀H₂ в растворе толуола превращается в смесь, состоящую из исходного 7,8-С70H2, 1,9-С70H2, образовавшегося в результате изомеризации, и C₇₀, получившегося при разложении.⁴³ Изомер 7,8-С₇₀Н₂ менее стабилен по сравнению с 1,9-изомером, но оба соединения устойчивы длительное время при -20°С в растворе толуола или гексана. Оба вещества более чувствительны к действию света и воздуха, чем С₆₀H₂.

Структура полученных изомеров $C_{70}H_2$ подтверждена спектрами ЯМР ¹Н: протоны 7,8- $C_{70}H_2$ дают синглет с δ 3.91 м. д., а протоны 1,9- $C_{70}H_2$ — квадруплет с центром при 4.0 м. д. Электронные спектры изомеров $C_{70}H_2$ заметно отличаются от спектра поглощения C_{70} и могут быть полезны при идентификации продуктов присоединения C_{70} .⁴³

Взаимодействие металлоорганических соединений с фуллеренами происходит исключительно по 6-6-связи.^{18–22} Так, гидроцирконирование открывает путь для селективного получения функциональных производных фуллерена. Продуктом реакции гидроцирконирования C_{60} является комплекс C_{60} с Zr(IV), а именно, $[(\eta^5-C_5H_5)_2ZrCl]_nC_{60}H_n$, где n = 1, 2, 3. Гидролиз этого интермедиата приводит к смеси гидридов фуллерена, среди которых основным является $C_{60}H_2$ (схема 1).³⁴ Дигидрид $C_{60}H_2$, полученный таким образом, охарактеризован с использованием ЯМР ¹Н, ИК-, УФспектроскопии и масс-спектрометрии.[‡]

‡ С₆₀H₂: М⁺, *m*/*z* 722; ИК (КВг), *v* (см⁻¹) = 2956, 1427, 1327, 1259, 1184, 1042, 791, 728, 725, 599, 590, 574, 565, 550, 527, 478; УФ и видимый, *λ* (нм) = 486, 457, 431, 404, 322, 308, 256, 212.

Описаны и другие методы восстановления фуллеренов C_{60} и C_{70} , например, восстановление водородом в присутствии 5% Pt/C, ацетатом Cr(II) и диимидом.³⁸ Во всех случаях отмечается изменение спектральных характеристик реакционных смесей в видимой области. В спектрах ЯМР ¹Н фуллерена C_{60} обнаружены пики с δ 5.9 и 6.1 м. д., которые относят к восстановленным производным $C_{60}.^{33,38}$ Производные фуллеренов, образующиеся под действием ацетата Cr(II) или водорода в присутствии 5% Pt/C нестабильны на свету; в присутствии кислорода воздуха они превращаются в фуллеролы. Напротив, продукты восстановления C_{60} и C_{70} диимидом образуются с высоким выходом; реакция отличается простотой исполнения. Этот метод является удобным способом получения ди- и тетрагидридных производных фуллеренов.

$$C_{60} + H_2N_2 \longrightarrow C_{60}H_2 + N_2.$$

Основным продуктом восстановления C_{60} диимидом является 1,2,3,4-тетрагидрофуллерен $C_{60}H_4$; кроме него образуются и другие изомеры $C_{60}H_4$ и более высокогидрированные соединения. При восстановлении C_{70} диимидом получено восемь продуктов: два из них были охарактеризованы как тетрагидриды 1,5,6,9- $C_{70}H_4$ и 1,7,8,9- $C_{70}H_4$, еще два — как дигидриды 1,9- $C_{70}H_2$ и 7,8- $C_{70}H_2$, аналогичные полученным ранее при восстановлении дибораном.⁴³ Отмечается, что гидрированные производные фуллеренов растворяются в CS₂ лучше, чем в бензоле или толуоле. Химические сдвиги сигналов ЯМР ¹Н сильно зависят от растворителя: в CS₂ они сдвигаются в слабое поле (на 1 м. д.) по сравнению с бензолом.

3. Восстановление фуллеренов углеводородами

При высоких температурах фуллерены становятся дегидрирующими агентами по отношению к углеводородам. Так, обработка C_{60} в запаянной стеклянной ампуле при 350°C в инертной атмосфере расплавом 9,10-дигидроантрацена ($C_{60}:9,10$ -ДГА = 1:120), выступающего в качестве источника водорода, приводит к быстрому (30 мин) обесцвечиванию расплава.

$$C_{60} \xrightarrow{C_{60}H_{2n}} C_{60}H_{2n}$$

Найдено, что восстановление фуллерена C_{60} в условиях некаталитического переноса атомов водорода от донора к акцептору 44 приводит к гидридам $C_{60} \rm H_{36}$ и $C_{60} \rm H_{18}.^{45}$ В данной реакции фуллерен может выступать в качестве радикальной ловушки. 46

После возгонки избытка ДГА и образовавшегося антрацена был выделен белый (или слегка желтоватый) твердый продукт С₆₀Н₃₆, который был охарактеризован с помощью масс-спектрометрии. Ему отвечает пик при *m*/*z* 756. Увеличение времени взаимодействия до 24 ч приводит к получению окрашенного продукта с *m/z* 738, что отвечает формуле С₆₀Н₁₈. Наличие гидрида такого состава подтверждено также методом TCX.§ Одновременно в расплаве был обнаружен свободный фуллерен С₆₀. Исследование этой реакции методом ЭПР показало, что в качестве интермедиата образуется радикал 9-гидроантрила. Аналогично, при использовании для восстановления фуллерена дигидроантрацена-d₄, дейтерированного по положениям 9 и 10, получаются C₆₀D₃₆ и С₆₀D₁₈. При гидрировании С₆₀ путем некаталитического переноса атомов водорода от донора к акцептору в качестве восстановителя был использован 1,4-циклогексадиен.⁴⁵

$$SiO_2$$
, CH₂Cl₂: Гексан = 1:3; $R_f(C_{60}H_{36}) = 0.37$,^{29,45} a $R_f(C_{60}H_{18}) = 0.15$.⁴⁵

Растворы $C_{60}H_{36}$ в ряде органических растворителей нестабильны даже в атмосфере инертного газа. Они со временем мутнеют, при этом сигналы в спектре ЯМР ¹Н уширяются. Нагревание гидридов $C_{60}H_{36}$ и $C_{60}H_{18}$ в среде инертного газа (550°С, 15 мин) приводит к их количественному дегидрированию до C_{60} . В качестве химических дегидрирующих агентов для гидрида $C_{60}H_{36}$ могут выступать антрацен и α -метилстирол (при восстановлении антрацена образуется инертный в этих условиях 1,2,3,4-тетрагидроантрацен).⁴⁵

Заключение о структуре $C_{60}H_{36}$, полученного по методу, описанному в работе⁴⁵, делается на основании неспособности последнего восстанавливаться до соответствующих анион-радикалов[¶] при обработке металлическим калием в диметоксиэтане. По мнению авторов⁴⁵ этот факт говорит о наличии в молекуле $C_{60}H_{36}$ изолированных C=C-связей, подобно тому, как это предполагается для продукта восстановления по Берчу.

[7Н]Бензантрен играет роль катализатора при гидрировании C_{60} и C_{70} по методу⁴⁵ с использованием в качестве восстановителя дигидроантрацена (соотношение фуллерен : катализатор : ДГА = 1 : 5 : 100).⁴⁷

$$C_{70} \xrightarrow{250^{\circ}C} C_{70}H_{2n}$$

Применение катализатора позволило снизить температуру превращения с 350°С (для некаталитической реакции) до 250°С, но селективность превращения при этом стала ниже. Фуллерен С₇₀ реагировал медленнее С₆₀. Этим методом были получены также дейтеропроизводные С60 и С70. Массспектры продуктов реакции, протекающей в присутствии катализатора, показывают широкое распределение по массам (см. табл. 1). Согласно масс-спектрометрическому исследованию с ионизацией пробы электронным ударом, в случае С₆₀ в условиях катализируемой реакции может быть получен гидрид с большим содержанием водорода, а именно С₆₀Н₄₄. В то же время масс-спектры продуктов реакции с ионизацией пробы лазерной десорбцией (ЛД-МС) были идентичны спектрам продуктов, полученных в некаталитической реакции, что свидетельствует об одинаковой степени восстановления С₆₀ и С₇₀ в обоих случаях, а именно до С₆₀Н₃₆ и С70Н36. Эта особенность метода ЛД-МС отмечается и другими исследователями, работающими с фуллеренами, и объясняется возможностью отщепления водорода от неустойчивых гидридов при лазерной десорбции.

Интересно, что для $C_{70}H_{36}$ основной пик в ЭУ-МС (при m/z 876) свидетельствует о повышенной стабильности гидрида с 36 атомами водорода. Рассчитана энтальпия образования $C_{70}H_{36}$, ($\Delta H_f^{\circ}(\mathbf{r}) = 490.2$ ккал·моль⁻¹).⁴⁷ Дальнейшее восстановление C_{70} до $C_{70}H_{40}$ приводит к увеличению $\Delta H_f^{\circ}(\mathbf{r})$ до 535.7 ккал·моль⁻¹. Следовательно, образование $C_{70}H_{36}$ является термодинамически более предпочтительным процессом.

При кипячении C_{60} и мезитилена (163°С) в инертной атмосфере в течение 24 ч в реакционной смеси были обнаружены как продукты димеризации мезитилена, так и продукты его присоединения к C_{60} (аддукты C_{60} с одним, двумя и тремя мезитиленовыми остатками), причем выход продуктов сочетания мезитилена (димеров и тримеров) в 7 раз превышает начальную концентрацию C_{60} . Поэтому в этом случае можно говорить о каталитическом действии фуллерена C_{60} .⁴⁸

О влиянии C_{60} на процесс дегидрирования гидроароматических соединений при нагревании говорится также в работе ⁴⁸. Так, например, при дегидрировании 9,10-дигидрофенантрена в присутствии C_{60} отношение фенант-

¶ Все попытки наблюдать спектр ЭПР анион-радикалов гидрированных и дейтерированных фуллеренов были безуспешными.⁴⁵

рен: дигидрофенантрен составляет 33, а в его отсутствие при прочих равных условиях — 1.3.⁴⁸ Фуллерен С₆₀ при этом превращается в восстановленные производные с различным содержанием водорода. При длительном нагревании гидрированные производные фуллерена, как и в случае С₆₀Н₃₆,⁴⁵ дегидрируются. Таким образом, С₆₀ выступает в этой реакции как катализатор.

Исследовано влияние C_{60} на расщепление связи углерод – углерод в 1,2'-динафтилметане в присутствии доноров водорода, таких как дигидроантрацен, дигидрофенантрен и др. (схема 4).⁴⁸ Найдено, что при добавлении C_{60} к антрацену происходит заметное возрастание константы скорости реакции и изменение селективности (отношение 2-метилнафталин: 1-метилнафталин). При гидрогенолизе 1,2'-динафтилметана в отсутствие фуллерена это отношение составляет ~ 1.5, а в присутствии фуллеренсодержащих систем оно достигает значений ~ 4.4 – 5.4. Полученные результаты свидетельствуют об участии C_{60} в акцептировании атомов водорода от гидроароматических соединений или соответствующих гидроарильных радикалов и в последующем переносе водорода к 1,2'-динафтилметану.

Схема 4

Ar/ArH₂ — антрацен/9,10-дигидроантрацен, пирен/4,5-дигидропирен, фенантрен/9,10-дигидрофенантрен.

Сообщается о гидроалкилировании фуллерена под действием непредельных соединений, таких как 1-гептен, 4-аллиланизол, с образованием алкилгидридов фуллеренов.⁴⁹

Обнаружено, что в условиях контакта разнообразных углеводородов, в том числе алканов, с фуллеренами (фуллереновыми коконами)[†] при высоких температурах (500-700°С) происходит выделение в газовую фазу большого количества молекулярного водорода и продуктов дегидрогенизации углеводородов.⁵⁰ Реакции проводились при очень низком давлении углеводородов (1 Topp),⁵⁰ что свидетельствует о высокой активности фуллеренов в реакции активации С – Н-связей, в том числе в алканах. В отличие от промышленных процессов пиролиза в этом случае в продуктах реакции преобладают низшие олефины. Например, из гексана получаются этилен, пропилен и водород при полном отсутствии этана, пропана и С₄-углеводородов.⁵⁰ Таким образом, на фуллереновых коконах помимо разрыва С-Нсвязей эффективно протекает и крекинг прочных С-С-связей в алканах. Пиролиз толуола тоже сопровождается разрывом связи СН₃-С₆Н₅, о чем свидетельствует присутствие метана и бензола в продуктах реакции. 50

В указанном диапазоне температур становится возможной и активация метана (энергия связи C-H равна 105 ккал·моль⁻¹).⁵¹⁻⁵³ Пороговое значение температуры

начала пиролиза метана на фуллереновой черни ‡ в качестве катализатора составляет 600°С, что на 250°С ниже порога реакции в отсутствие катализатора и на 100-200°С ниже порогового значения температуры для графита, активированного угля и других углеродных катализаторов.^{51–53} Высокие значения конверсии метана (десятки процентов) в условиях проточного реактора достигаются при температурах выше 900°С. При этом дегидрогенизационная активность исходной фуллереновой черни настолько высока, что в начале реакции водород является практически единственным газообразным продуктом. 53 Только после накопления некоторого количества пироуглерода и уменьшения вследствие этого дегидрогенизационной активности каталитической системы в продуктах появляются газообразные углеводороды, среди которых доминирует этилен. Дальнейшее накопление пироуглерода приводит к уменьшению как степени конверсии метана, так и селективности по этилену.53 Преодолеть это нежелательное явление удалось с помощью разбавления исходного потока метана водородом.⁵³

Обнаружено,⁵³ что добавление водорода в метан способно коренным образом изменить селективность процесса. При достаточно сильном разбавлении реакция начинается сразу, без упомянутого выше периода индукции, при этом образуется почти чистый этилен (селективность по этилену 90–94%), количество пропилена не превышает 6–10%, количество других продуктов — на уровне следов.⁵³ Степень конверсии метана сравнительно невысока (~ 4%), но остается стабильной в течение многих часов при 1000°С. Накопление пироуглерода в этих условиях не наблюдается.

Такое влияние разбавления на протекание процесса полностью обратимо, что предполагает в качестве механизма этого интересного явления динамическую блокировку водородом наиболее активных центров дегидрогенизации на поверхности фуллереновой черни. Фуллереновая чернь состоит в основном, из трех-пятислойных стопок сильно искривленных графеновых листов с локальным радиусом кривизны порядка размеров обычных фуллереновых структур.⁵⁴ Искривление, обусловленное наличием пяти- и семичленных циклов в структуре листа, возникает в сильно неравновесных условиях электрической дуги, характеризуемых высокими значениями градиента температур и концентраций углеродных частиц. Это отличает фуллереновую чернь от всех промышленных саж, активированных углей и графита, единственным базисным структурным элементом которых являются абсолютно плоские графеновые листы, т.е. плоские двумерные макромолекулы, составленные из атомов углерода, образующих смежные шестигранники. Кривизна углеродной поверхности в фуллеренах и фуллереновой черни может быть причиной их более высокой реакционной способности по отношению к водороду и связям C - H.

Механизм активации углеводородов RH в присутствии фуллеренов заключается в следующем. В первичном акте взаимодействия углеводорода с фуллереном происходит активация связи C – H напряженной двойной связью C^{*} = C^{*} искривленной углеродной поверхности, в результате чего образуется фрагмент R – C^{*} – C^{*} – H. Последующая миграция атомов водорода и радикалов R по поверхности, множественное обратимое присоединение молекул RH и водорода, реакции типа двухцентрового и β-элиминирования, а также диссоциация свободных радикалов R и другие процессы, возможные при достаточно высоких температурах, ответственны за образование набора продуктов в изученных

‡ Фуллереновая чернь представляет собой мелкодисперсный углеродный материал, остающийся после экстракции фуллеренов подходящим растворителем из фуллеренсодержащей сажи, получаемой при электродуговом испарении графита в атмосфере инертного газа.

[†] Фуллереновые коконы представляют собой невозгоняемые (в отличие от фуллеренов) при высоких температурах полимерные структуры, в которых молекулы фуллеренов связаны между собой кислородными мостиками, число которых примерно равно числу молекул фуллерена.⁵⁰

жидкофазных и газофазных реакциях. Так, при масс-спектрометрическом анализе фуллеренсодержащей сажи, проведенном после высокотемпературной дегидрогенизации метана, обнаружены метилированные производные фуллеренов, а именно $C_{60}(CH_3)_n$.⁵¹ Модификация катализатора, например допирование калием фуллеренсодержащей сажи, приводит к увеличению селективности образования высших углеводородов из метана.⁵²

4. Восстановление фуллеренов в системе металл – кислота

Исследовано восстановление С60 в системах металл (М)- $M = Sn \{ E^{Ox/Red} (Sn^{2+}/Sn) = -0.75 B \},$ кислота, где Fe { $E^{Ox/Red}$ (Fe²⁺/Fe) = -1.05 B} μ Zn { $E^{Ox/Red}$ (Zn²⁺/Zn) = -1.37 В}, потенциалы измерены относительно Fc⁺/Fc (Fc — ферроцен).55 Эти реагенты в принципе позволяют получить анионы C_{60}^- и $C_{60}^{2-},$ так как потенциалы для $C_{60}^{\upsilon}/C_{60}^$ и C_{60}^{-}/C_{60}^{2-} равны -0.98 и -1.37 В относительно Fc⁺/Fc. Однако системы Sn-кислота и Fe-кислота оказались неэффективными для восстановления С₆₀, и лишь система Zn – кислота оказалась приголной для этих целей. В качестве кислоты используют 6 М или 12 М HCl, ледяную CH₃COOH, концентрированную H₂SO₄. При кипячении толуольного раствора С₆₀ в инертной атмосфере образуется смесь, состоящая из 7% C₆₀H₂, 3% C₆₀H₄ и 1% C₆₀H₆, которая была разделена с использованием ВЭЖХ. В небольших количествах в ней присутствуют также фуллерены с большим содержанием водорода — С60H6-С60H22, однако они не были выделены.⁵⁵ Масс-спектры гидридов фуллеренов, полученных по этому методу, демонстрируют сильную тенденцию продуктов к фрагментации при ионизации с образованием С₆₀. Доказано, что вещество с массой 722, присутствующее в реакционной смеси в наибольшем количестве, имеет такие же спектральные и хроматографические характеристики, что и 1,2-C₆₀H₂.³³ Таким образом, в указанных условиях в системе C₆₀-Zn-кислота в основном получается наиболее устойчивый изомер дигидрофуллерена, 1,2-С₆₀H₂. Обработка реакционной смеси, полученной в результате взаимодействия C₆₀ с цинком в соляной кислоте, DDQ приводит к С₆₀, что согласуется с образованием гидрированных производных С₆₀.

Восстановление C_{60} и C_{70} в системе Zn-конц. HCl-толуол (бензол) в инертной атмосфере происходит быстро уже при комнатной температуре и приводит при отсутствии света к образованию преимущественно $C_{60}H_{36}$, $C_{70}H_{36}$ и $C_{70}H_{38}$.⁵⁶ При этом в случае C_{60} образуются также заметные количества более высокогидрированных производных: $C_{60}H_{38}$ (15%) и $C_{60}H_{40}$ (3%).⁵⁶ Фуллерен C_{70} восстанавливается с меньшей скоростью, чем C_{60} , кроме того, соединение $C_{70}H_{36}$ менее термически устойчиво, чем $C_{60}H_{36}$.

Чувствительность гидридов фуллеренов, синтезированных по этому методу, к кислороду заметно повышается в растворе в присутствии света. Поэтому в масс-спектрах $C_{60}H_{36},\,C_{70}H_{36}$ и $C_{70}H_{38},$ полученных с помощью ионизации электронным ударом, пики исходных фуллеренов и их низших гидридов отсутствуют только в том случае, если спектры зарегистрированы сразу после приготовления веществ; в противном случае в масс-спектрах появляются пики, отвечающие продуктам дегидрирования (С60 и С70) и низшим гидридам (C₆₀H₁₈ в случае C₆₀H₃₆), а также фуллеролам. Образование высокогидрированных фуллеренов, в том числе C₆₀D₄₄ и C₇₀D₄₈, при действии Zn в концентрированной DCl связано с большей стабильностью связей C-D по сравнению со связями С-Н, в результате чего потеря энергии резонанса исходного фуллерена частично компенсируется. Атомы водорода в гидридах фуллеренов не подвергаются H/D-обмену в отсутствие света ни с D₂O, ни с D₂O/NaHCO₃ или D₂O/NaOH, что свидетельствует о понижении кислотности связи С-Н в С₆₀Н₃₆ по сравнению, например, с

Рис. 3. Спектры поглощения $C_{60}H_{36}$ (*a*) и $C_{70}H_{36}$ (*b*) (высшие гидриды присутствуют в виде примесей).⁵⁶

кислотностью этой связи в аддукте C_{60} с морфолином (NH(CH_2)_4O) состава $HC_{60}N(CH_2)_4O$, в последнем случае водород быстро обменивается с CH_3OD. $^{5,\,57}$

Гидриды $C_{60}H_{36}$ и $C_{70}H_{36}$ устойчивы к дальнейшему восстановлению водородом в присутствии катализатора Rh/Al₂O₃ (в качестве растворителя используется толуол), однако они имеют тенденцию к образованию триметиленовых аддуктов (о чем свидетельствует появление в массспектре пиков с m/z 798, 840 и 882 в случае $C_{60}H_{36}$) по неизвестному механизму.⁵⁶ При проведении реакции в бензоле-d₆ (в качестве растворителя) наблюдали H/D-обмен между гидридом фуллерена и дейтерием растворителя.⁵⁶

УФ-Спектр С₇₀Н₃₆ имеет широкую полосу с максимумом при 275 нм и плечо при 223.5 нм (рис. 3, *b*), которые близки к значениям λ для нафталина (221 и 258–280 нм).⁵⁶ По мнению авторов,⁵⁶ это находится в согласии с ароматической структурой, предположенной для С₇₀Н₃₆ (см. работу ⁵⁸).

5. Восстановление фуллеренов водородом

Прямое гидрирование C_{60} и C_{70} проведено в твердой фазе при давлении водорода 50–80 МПа и температуре 573–623 К без использования катализатора.⁵⁹ При этом образуются гидриды фуллеренов состава $C_{60}H_x$ (x = 2-18) и $C_{70}H_y$ (y = 4-30), идентифицированные с использованием массспектрометрии. Авторы ⁵⁹ попытались также ответить на вопрос, можно ли при высоком давлении и повышенной температуре присоединить атомы или молекулы водорода в эндоэдральные положения молекулы фуллерена. Для избежания потерь фуллерена реакцию проводили в запаянной капсуле. Материал капсулы (сплав 25% Ag–75% Pd, Au, стекло), в которой проходит гидрирование, на выход продуктов и скорость гидрирования не влияет. Это дало основание считать, что гидрирование идет только под действием водорода и инициируется небольшими количествами атомарного водорода, который генерируется в реакционной среде при этих температурах и давлении.

Нагревание фуллерена C_{60} в запаянной AgPd капсуле в атмосфере H_2 при температуре ≥ 950 К приводит к полному исчезновению образца. Поскольку ни C_{60} , ни его гидриды не могут диффундировать из капсулы, то в данных экспериментальных условиях фуллерен, по-видимому, разлагается до низкомолекулярных фрагментов, реагирующих с материалом капсулы, при этом присутствие водорода играет важную роль.

Исследование продуктов реакции прямого гидрирования фуллерена показало, что водород чаще всего, если не всегда, присоединяется экзоэдрально к остову фуллерена. Для доказательства этого факта использована реакция переноса протона.

$$Py + C_{60}H_x^+ \longrightarrow PyH^+ + C_{60}H_{x-1}$$
.

Пиридин (Ру, сродство к протону 220.4 ккал моль⁻¹) является более сильным основанием, чем C₆₀ (сродство к протону 205 ккал моль⁻¹), поэтому взаимодействие может иметь место только в том случае, если все или часть атомов водорода в гидриде фуллерена будут связаны экзоэдрально, хотя возможность эндоэдрального связывания водорода также не исключается. Гидрирование несколько понижает потенциал ионизации фуллерена: $I(C_{60}H_x, x = 2-18) \le 7.53$ эВ, а $I(C_{60}) = 7.6$ эВ. Отмечается, что гидрид C₆₀H_x, полученный по методу прямого твердофазного гидрирования, отличается бо́льшей стабильностью по сравнению с образцами, полученными по другим методикам.^{29, 60}

Фуллерит § (смесь C_{60} и C_{70}) гидрировали (~ 1 ч) водородом при 400°С и давлении Н2 6.9 МПа, используя иодистый этил в качестве промотора образования в системе атомарного водорода.⁶¹ В отсутствие С₂H₅I гидрирование не происходит. Повышение температуры и давления приводит к понижению степени гидрирования. Масс-спектрометрический анализ восстановленного фуллерита с ионизацией пробы бомбардировкой быстрыми атомами показал, что в ходе реакции образуется смесь гидридов: в основном С₆₀Н₃₆ и С70H36. Использование более «жестких» масс-спектрометрических методик, таких как ЭУ и ЛД, оказалось невозможным из-за термического разрушения продукта до более низкомолекулярных соединений (С60H18, С60H8 и др. в случае С₆₀Н₃₆). Спектральных доказательств этилирования или иодирования фуллеренов в этих условиях не найдено. Продукт реакции не растворим в большинстве органических растворителей и лишь слегка растворим в нитробензоле, что отличает его от гидрида, полученного при восстановлении по Берчу²⁹ или по методу, основанному на некаталитическом переносе атомов водорода от донора к акцептору.⁴⁵

$$C_{60} \xrightarrow{C_2H_5I, H_2} C_{60}H_{2n}$$

Твердофазный спектр ЯМР¹³ С полигидрированного фуллерена $C_{60}H_{36}$, полученного по методу радикального гидрирования, свидетельствует о присутствии единственного высокосимметричного соединения, возможно, симметрии D_{3d} или C_{3i} .⁶¹ В то же время авторы ⁶² не видят согласия между экспериментальным спектром ЯМР¹³ С для $C_{60}H_{36}$ ⁶¹ и структурой D_{3d} .

Реакция C₆₀ (до 90% в смеси) со сверхзвуковым молекулярным пучком H_2 или D_2 изучена при температуре 540–750°С и давлении 100–500 Торр.⁶³ Найдено, что взаимодействие H_2 с C₆₀ в этих условиях приводит как к гидрированию фуллерена (к C₆₀ может быть присоединено до восьми атомов водорода), так и к образованию низкомолекулярных

§ Твердый кристаллический материал, состоящий из чистых фуллеренов или их смесей, называется фуллеритом. углеводородных частиц вследствие разрушения скелета C_{60} . При замене H_2 на D_2 наблюдается большой изотопный эффект. Основным продуктом является $C_{60}H_2$, выход которого зависит как от давления H_2 , так и от температуры.

$$C_{60} + H_2(r) \longrightarrow C_{60}H(r) + H(r),$$

$$H(r) + C_{60}(r) \longrightarrow C_{60}H(r),$$

$$C_{60}H(r) + H_2(r) \longrightarrow C_{60}H_2(r) + H(r)$$

$$2C_{c0}H(r) \longrightarrow C_{c0}H_2(r) + C_{c0}(r)$$

Проведено гидрирование твердого C₆₀ атомарным водородом при 77 К (в матрице циклогексана).⁶⁴ С использованием спектроскопии ЭПР, ИК и ББА-МС идентифицированы частицы C₆₀H ($g = 2.00218 \pm 0.0004$), C₆₀H_{2n+1} и C₆₀H_{2n}.

С помощью методики плазменной десорбции исследовано гидрирование атомарным водородом тонких пленок C_{60} .⁶⁵ Предложенный в работе⁶⁵ подход позволяет определять степень гидрирования молекул C_{60} . Найдено, что водород ковалентно связывается с молекулой фуллерена с образованием гидридов $C_{60}H_n$ (n = 2-24). Авторы исключают возможность образования гидридов фуллерена за счет взаимодействия C_{60} с толуолом, оставшимся в пленке, в условиях масс-спектрометрического анализа.

Сообщается о попытке имплантировать атом водорода внутрь молекулы C_{60} (плазма, 10-25 зВ, $550-600^{\circ}$ С, $(5-10)\cdot10^{-4}$ Торр). С помощью ВЭЖХ, ЯМР¹Н и массспектрометрии показано, что водород присоединяется экзоэдрально с образованием соединений C_{60} Н₂ и C_{60} Н₄. Доказательств образования в этих условиях комплексов с эндоэдрально связанным водородом не получено.⁶⁶

Отметим, что присоединение атома H к C_{60}^+ в газовой фазе осуществляется очень эффективно, бимолекулярная константа скорости реакции имеет величину $k \sim 6 \cdot 10^{13}$ см³·моль⁻¹·c⁻¹ при 294 К и 0.4 Торр гелия.⁶⁷ В тех же условиях реакция C_{60}^+ с молекулярным водородом не протекает, ⁶⁸ однако ускоренный до энергии 5–6 кэВ ион C_{60}^+ способен, по-видимому, включать молекулу H₂ внутрь углеродного каркаса с образованием эндоэдрального комплекса H₂@ C_{60}^+ .⁶⁹

Гидрирование молекул фуллеренов и других нейтральных кластеров углерода C_n в газовой фазе при высокой температуре изучено методом время-пролетной масс-спектрометрии с испарением вещества лазерной десорбцией для широкого диапазона n = 6-75.⁷⁰ Кластеры получали импульсным лазерным испарением графита и смешивали их с D_2 в проточном реакторе. Изучена кинетика изменения концентраций C_n и формирования продуктов $C_n D_m$ (m = 1-4). Дейтерированные кластеры образуются путем последовательного присоединения атомов D по реакции прямого отрыва от молекулы D_2 ($k \sim 10^{11}$ см³ моль⁻¹ · c⁻¹ при 2800 K).

$$C_n + D_2 \longrightarrow C_n D + D.$$

В некоторых случаях возбужденные частицы $C_n D^*$ подвергаются мономолекулярному распаду с предпочтительным образованием соединения C_3 (p = 3):

$$C_n D^* \longrightarrow C_{n-p} D + C_p$$
.

В случае четных кластеров C_{2n} с n < 20 продукт реакции $C_{2n}D_2$ представляет собой линейный полиин (карбин), который инертен по отношению к более глубокому гидрированию. Этот факт можно попытаться использовать для получения кристаллической формы карбина путем осаждения на холодной подложке продуктов реакции испаренного в атмосфере водорода графита. На возможность существования такой устойчивой при комнатной температуре формы карбина указывают эксперименты по конденсации на медной пластине продуктов электроискрового разрушения графита в атмосфере аргона (0.5 Topp),⁷¹ а также присутствие линей-

ных углеродных молекул в составе фуллереновой черни, полученной при электродуговом ⁷² или лазерном ⁷³ испарении графита.

«Нечетные» кластеры C_{2n+1} реагируют с D_2 с большей скоростью, чем «четные» кластеры.⁷⁰ Это различие прогрессивно увеличивается с ростом *n* в фуллереновом диапазоне масс (*n* > 36), где реакционная способность четных кластеров (фуллеренов) уменьшается, а нечетных (структур с незамкнутыми углеродными оболочками, имеющими радикальный характер и бо́льшее геометрическое сечение столкновений) растет.⁷⁰

Высокотемпературные реакции гидрирования фуллеренов и их предшественников влияют на выход фуллеренов в углеводородных пламенах и углеродной дуге. Даже несколько процентов водорода в гелии полностью блокируют образование С₆₀ при электродуговом испарении графита.⁷⁴ Возможность образования гидридов С₆₀Н_x в этом процессе при низком содержании водорода в газовой среде специально не изучалась. В то же время в атмосфере водорода в составе катодного депозита, образующегося в углеродной дуге постоянного тока, появляются открытые углеродные нанотрубки. 75, 76 При этом внутренний канал открытых нанотрубок свободен от аморфных углеродных отложений, характерных для трубок, вскрытых путем обработки сильными окислителями. Кроме того, количество сферических углеродных наночастиц в составе депозита резко уменьшается в атмосфере водорода.⁷⁵⁻⁷⁷ Таким образом, для решения задачи получения открытых и очищенных нанотрубок применение водорода весьма перспективно. Действие водорода в данном случае заключается в гидрировании торца растущей открытой нанотрубки с образованием относительно устойчивых связей С-Н, которые препятствуют формированию пятичленных циклов и, соответственно, закрытию трубки при понижении температуры.75,76

6. Восстановление фуллеренов органическими соединениями при облучении

При исследовании методом ЭПР продуктов, образовавшихся при фотолизе (Hg/Xe-лампа высокого давления) бензольного раствора C_{60} , содержащего тиофенол, 1,4циклогексадиен или Bu_3SnH , было найдено, что спектр ЭПР состоит из двух линий с расщеплением $33G.^{78}$ Авторы отнесли данный спектр к радикалу $C_{60}H$ — первоначальному продукту реакции фотогенерированного атома водорода с C_{60} (атомы водорода образуются при фотолизе тиолов, гидридов олова и 1,4-циклогексадиена).

При нагревании (100°С, толуол) или импульсном фотолизе (Nd³⁺: YAG-лазер, $\lambda = 532$ нм, бензонитрил) реакционной смеси фуллерен С₆₀–диэтиловый эфир 2,6-диметил-1,4дигидропиридин-3,5-дикарбоновой кислоты (1) в спектре поглощения С₆₀ в видимой области наблюдаются заметные изменения: в нем появляются полосы при 434 и 708 нм, характерные для дигидрофуллерена, и исчезают полосы, характерные для свободного С₆₀. С помощью ЯМР ¹Н показано, что в растворе присутствует диэтиловый эфир 2,6диметилпиридин-3,5-дикарбоновой кислоты — продукт дегидрирования 1. Масс-спектрометрически доказано образование гидридов состава С₆₀H_x (x = 2, 4, 6).⁷⁹

7. Каталитическое гидрирование фуллеренов

Исследована возможность каталитического гидрирования С₆₀ в присутствии переходных металлов.⁸⁰⁻⁸⁵ Найдено, что в присутствии Ru/C, Pt/C, Pd/C фуллерен гидрируется (давление H₂ 100 атм, 180°С), образуя с низким выходом С₆₀Н₃₆ (в зависимости от давления водорода может быть получена смесь С₆₀Н₃₆ и С₆₀Н₁₈). Активность катализаторов изменяется в ряду Pt < Ni < Pd < Ru. Низкий выход гидрированных продуктов обусловлен рядом причин, в том числе высокой адсорбционной способностью активированного угля, что приводит к потерям фуллерена и его гидридов, а также гидрированием растворителей (толуол) на некоторых катализаторах (Ru/C, Ni/диатомит). В работе 86 сообщалось об образовании комплексов С60 с палладием, которые устойчивы до 120°C (выше этой температуры начинается их диссоциация). Именно эта температура является температурой начала гидрирования С₆₀ в присутствии Pd/C.^{80, 81} Образовавшиеся гидриды фуллеренов нестабильны даже в инертной атмосфере.

Исследовано гидрирование C₆₀ в присутствии Rh/Al₂O₃ в C₆D₆.⁸⁷ Сравнение спектров ЯМР ¹Н и ¹³С полученного продукта и C₆₀H₂, синтезированного по методу, описанному в работе ³³, показало их полную идентичность. Было найдено, что выход C₆₀H₂ при гидрировании C₆₀ в присутствии Rh/Al₂O₃ сначала возрастал, достигая ~ 14%, а затем уменьшался, при этом выход более высокогидрированных фуллеренов возрастал (данные ВЭЖХ). Продукт реакции был вполне устойчив в реакционной среде, но на свету при действии O₂ он разрушался и частично превращался в C₆₀.

Реакционная способность координационно-связанного фуллерена С₆₀ продемонстрирована на примере гидрирования в твердой фазе фуллерида палладия состава C₆₀Pd_{4.9} молекулярным дейтерием (473-673 K, давление D₂ 20 атм).88 В ходе реакции в относительно мягких условиях образуется набор дейтерофуллеренов — $C_{60}D_x$ (x = 2-26), причем основными являются продукты с x = 2, 4, 18 и 26. В реакционной смеси с помощью масс-спектрометрии с полевой десорбцией обнаружены также дейтерофуллерены, содержащие нечетное число атомов дейтерия. В ИК-спектре дейтерида фуллерена, полученного при 473 К, присутствует широкая полоса с центром при 2150 см⁻¹ [v(C-D)], интенсивность которой возрастает с увеличением температуры реакции. В видимой области спектра раствора продукта дейтерирования фуллерена имеются полосы поглощения при 407 (С₆₀), 435 и 715 нм.

Осуществлен прямой твердофазный синтез $C_{60}H_2$ исходя из C_{60} и стехиометрически контролируемого количества водорода (температура реакции — 400–500°С, продолжительность — 12 ч).⁸⁹ В качестве источника активированного водорода использовали гидрид палладия. Основным продуктом является 1,2- $C_{60}H_2$ (~15%). В небольшом количестве (3–5%) образуется также $C_{60}H_4$ (в виде термодинамически наиболее стабильного 1,2,3,4- $C_{60}H_4$). Ранее уже наблюдалась изомеризация гидридов фуллеренов $C_{70}H_2$ и $C_{60}H_4$ в наиболее устойчивые 1,2- и 1,2,3,4-изомеры.^{42,43} С увеличением давления водорода выход $C_{60}H_4$ растет, при этом количество дигидрофуллерена остается неизменным.

Каталитическое гидрирование C_{60} в кипящем толуоле в присутствии Ru/C приводит к высокогидрированным соединениям (вплоть до $C_{60}H_{50}$).⁸³ Степень гидрирования увеличивается с повышением давления водорода и температуры реакции. В масс-спектре (ПД-МС) продуктов гидрирования C_{60} , полученных при температуре 280°С и давлении $H_2 \sim 130$ атм, обнаружен сигнал, отвечающий иону с m/z = 780, который, по мнению авторов работы ⁸³, принадлежит гидриду $C_{60}H_{60}$.

В кипящем толуоле гидриды фуллерена $C_{60}H_{18}$, $C_{60}H_{36}$ и $C_{60}H_{40}$ дегидрируются DDQ, причем выход C_{60} составляет 51, 48 и 45% соответственно.⁸² Гидрирование C_{70} в

аналогичных условиях (катализатор Ru/C) приводит к $C_{70}H_{36}$.⁸⁴ Дегидрирование последнего с помощью DDQ также происходит почти количественно.

$$C_{60}(C_{70}) \xrightarrow{H_2, Ru/C} C_{60}H_{2n}(C_{70}H_{2n}).$$

Дегидрирование гидрофуллеренов $C_{60}H_{2n}$ и $C_{70}H_{2n}$ при действии DDQ, в присутствии катализаторов (Ru/C) или при нагревании изучено также в работе⁸⁵. Высокие выходы фуллеренов достигаются только в присутствии DDQ как дегидрирующего агента, в то время как кипячение $C_{60}H_{36}$ в толуоле в присутствии Ru/C приводит к появлению лишь 1% C_{60} (ПД-MC).

Найдено, что температура потери 1% массы для $C_{60}H_{18}$ и $C_{60}H_{36}$ равна соответственно 164 и 175°С (в атмосфере азота) и 348 и 247°С (на воздухе). Глубина превращения $C_{60}H_{18}$ и $C_{60}H_{36}$ в азоте при 600°С равна 30.5 и 26.8%, в то время как при 400°С на воздухе эта величина составляет 56.6 и 40.1%.⁸⁵

8. Взаимодействие фуллеренов с гидридными комплексами переходных металлов

Обработка при комнатной температуре растворов С₆₀ (С₇₀) в толуоле, бензоле или CH₂Cl₂ комплексными гидридами металлов (Ir, Rh и др.) приводит к мгновенному изменению цвета раствора. При этом в электронных спектрах растворов появляются три полосы при $\lambda = 435$, 604(600), 640(630) нм (причем интенсивность их существенно выше интенсивности поглощения фуллеренов в этой области, что свидетельствует о количественном образовании комплексов металлов с фуллереном (схема 6). Последние были охарактеризованы спектральными методами.90-93 Для комплекса η^2 -C₆₀Rh(CO)H(PPh_3)₂ определена молекулярная структуры.93 Состав кристаллическая комплексов $(\eta^2 - C_n)$ IrH(CO)(PPh₃)₂ (*n* = 60, 70), их конфигурация и положение в фуллереновом ядре двойной связи С = С, координированной с металлом, установлены на основании ИК-спектров (сравнительным анализом со спектрами соответствующих дейтерированных аналогов) и данных спектроскопии ЯМР ¹Н и ³¹Р.⁹¹

Схема 6 (η^2 -C₆₀)MH(CO)(PPh₃)₂ $\leftarrow (M = Rh, Ir) \\ (\eta = Rh, Ir) \\ (\eta^2 - C_{60})MOCp_2 \\ (\eta^2 - C_{60})TaCp_2H$

При взаимодействии гидридных комплексов Ср₂ТаН₃, Cp_2MoH_2 с фуллереном образуются комплексы (η^2-C_{60}) ТаСр₂Н и (η^2-C_{60}) МоСр₂. В результате реакции, повидимому, выделяется молекулярный водород, однако его присутствие в газовой фазе не доказано.90 Взаимодействие 16-электронного плоско-квадратного комплекса PtHCl(PPh₃)₂ и 18-электронного октаэдрического комплекса Ir(H)₂Cl(CO)(PPh₃)₂ с фуллереном С₆₀ при кипячении щелочного (NaOH) раствора реагентов в смеси этанол-бензол (1:2) приводит к образованию (η²-С₆₀)Pt(PPh₃)₂ И (η²-C₆₀)IrH(CO)(PPh₃)₂ соответственно. ⁹⁴

9. Гидрирование механических смесей порошков фуллерита и водородсорбирующих металлов и интерметаллидов

Изучение процессов гидрирования и дегидрирования фуллеренов представляет интерес как с точки зрения разработки систем накопления и хранения водорода, так и с точки зрения других практических приложений.³, ^{28, 95, 96} Такие системы в настоящее время конструируются на основе интерметалли-

ческих соединений или металлов, способных избирательно и обратимо поглощать значительные количества водорода.97 В этом отношении особый интерес представляют гидриды фуллеренов, которые обладают малой плотностью и способны содержать до 8 мас.% водорода (как в гидриде С₆₀Н₆₀). Однако прямое некаталитическое гидрирование фуллерена С₆₀ эффективно протекает лишь при высоких давлениях (50-85 МПа) и температурах (573-623 К).⁵⁹ Другие перечисленные выше методы синтеза гидридов фуллеренов как систем обратимого хранения водорода также представляются малопривлекательными из-за трудности осуществления многократного повторения цикла «гидрирование-дегидрирование» и присутствия растворителей в системе. Преодолеть это можно путем разработки процессов твердофазного каталитического гидрирования фуллеренов. Выбор водородсорбирующих интерметаллидов и металлов в качестве потенциальных катализаторов таких процессов представляется естественным, поскольку водород в момент выделения из металлогидридов обладает высокой химической активностью.98

Процессы гидрирования фуллеренов молекулярным водородом в твердой фазе в присутствии эффективно сорбирующих водород интерметаллидов и металлов впервые были реализованы на примере соединений LaNi₅, LaNi_{4.65}Mn_{0.35}, СеСоз, металлических палладия и ванадия, а также гидридов перечисленных соединений. 99-101 Использование гидридов в качестве исходных компонентов механических смесей с фуллеренами предпочтительнее, поскольку из-за высокой хрупкости гидридов обеспечивается получение более мелких частиц при обработке смесей на вибромельнице по сравнению с порошками металлов и интерметаллидов. Кроме того, при применении гидридов удается избежать нежелательного окисления поверхности частиц в ходе механического размола их смеси с порошком фуллерита (такой размол необходим для обеспечения однородности смеси и увеличения поверхности контакта двух исходных компонентов).99-101

Гидрирование фуллеренов в таких механических смесях протекает вполне эффективно уже при давлении водорода 1-2.5 МПа и температурах 573-673 К, о чем свидетельствует, например, появление в ИК-спектрах продукта (после обработки смесей в этих условиях дейтерием)⁹⁹⁻¹⁰¹ интенсивной полосы поглощения при 2120 см⁻¹ (валентные колебания связей С-D).88 По данным химического анализа содержание дейтерия в образцах смесей монотонно увеличивается с ростом температуры дейтерирования до 673 К, с повышением давления D_2 и с увеличением числа циклов «сорбция – десорбция D2». Продукт с наибольшим содержанием дейтерия (24-26 атомов дейтерия на одну молекулу фуллерена C₆₀), был получен при взаимодействии D₂ со смесями фуллерита с интерметаллидами или металлами при давлении газа 2.5 МПа и 7-кратном повторении цикла «нагрев до 673 К (1 ч) – охлаждение до 293 К (1 ч)».⁹⁹⁻¹⁰¹ Аналогичные по составу гидриды образуются и при использовании обычного водорода.

С помощью дифференциального термического анализа (ДТА) и термогравиметрии гидрированных механических смесей найдено, что во всех случаях при 800 К происходит эндотермическая реакция распада гидрида фуллерена с выделением газообразного водорода в количестве 1-3 мас.%. Постоянство значения температуры разложения (800 К) означает, что присутствие металлов и интерметаллидов не влияет на процесс дегидрирования гидридов фуллеренов, в отличие от процесса гидрирования, который заметно облегчается в присутствии этих механических смесей (снижение давления водорода от 50-80 МПа до 1-2.5 МПа). Это может быть вызвано необратимым переносом активированного водорода с металла на двойные связи С = С фуллеренового компонента смеси. Известно, что для эффективного действия композиционной системы кроме тонкого механического размола смеси в вибромельнице, обеспечивающего

высокую площадь контакта компонентов, необходимо проведение нескольких циклов «гидрирование – дегидрирование», в течение которых, по-видимому, происходит изменение молекулярной структуры контакта с удалением поверхностного кислорода и вероятным образованием М–Ссвязей. По-видимому, именно с участием М–С-мостиков происходит необратимый перенос водорода с металла на С–С-связи. При высоких температурах (800 К), когда эффективно протекает дегидрирование фуллеренов, связи М–С в значительной степени диссоциируют, предотвращая обратный перенос водорода на металл, при этом органическая

стоятельно, без участия металлов. Гидрированные образцы механических смесей содержат помимо гидридов фуллеренов еще и гидридные фазы соответствующих интерметаллидов или металлов,^{99–101} о чем свидетельствуют хорошо различимые эндоэффекты в диапазоне 350–600 К. При этих температурах происходит распад соответствующих гидридов палладия (360 К),⁹⁹ ванадия (450 и 550 К) и гидридных фаз интерметаллидов LaNi_{4.65}Mn_{0.35}H_x и CeCo₃H_x (500–600 К), сопровождающийся выделением водорода.^{100, 101} Количество выделившегося водорода коррелирует с содержанием металла или интерметаллида в композиционной смеси и обычно составляет 70–90% от количества водорода в полностью насыщенных стехиометрических гидридах.

подсистема вынуждена выделять избыточный водород само-

Для всех изученных в работах⁹⁹⁻¹⁰¹ гидрированных композиций (кроме палладиевых) в диапазоне температур 950-1000 К на ДТА-кривых наблюдаются мощные экзотермические пики, не сопровождаемые изменением массы образца. Их появление связано с необратимым химическим взаимодействием фуллеренов с интерметаллидами или металлами, приводящим к образованию карбидов металлов. При гидрировании в присутствии ванадия экзоэффект, наблюдаемый при 900 К, обусловлен распадом фуллеренов и образованием карбида ванадия $VC_{0.8}$ с решеткой типа NaCl.¹⁰¹ В случае композиций на основе фуллерита и интерметаллидов LaNi₅, LaNi_{4.65}Mn_{0.35} и СеСо₃ продуктами высокотемпературного нагрева гидрированных образнов являются карбиды редкоземельного металла и металлические фазы соответствующего переходного металла.¹⁰⁰

В случае палладия высокотемпературный экзоэффект не наблюдается и исходное фазовое состояние металла не претерпевает изменений.⁹⁹ В ИК-спектрах образцов палладиевых смесевых композиций, подвергнутых нагреву до 1200 К, сохраняются полосы, характерные для фуллеренов, в отличие от композиций на основе ванадия, для которых аналогичная термообработка приводит к полному исчезновению полос фуллеренов. Палладиевые композиции частично растворяются в толуоле, в отличие от нерастворимых ванадиевых.

В ИК-спектрах образцов на основе интерметаллидов, нагретых до 1200 К, полосы поглощения фуллеренов отсутствуют, а на рентгенограммах выделяются пики металлической фазы никеля, марганца или кобальта соответственно. Магнитные измерения показали, что содержание ферромагнитных частиц никеля и кобальта в продуктах термообработки при 1200 К примерно равно количеству Ni и Co в исходных интерметаллидах, что свидетельствует о почти полном распаде последних. Этот факт и отмеченное разрушение фуллеренов позволяют предположить, что редкоземельный металл остается в образце в виде рентгеноаморфного карбида. Химическое взаимодействие интерметаллидов и фуллеренов протекает после завершения разложения гидридов фуллеренов, которое, по-видимому, облегчает процесс образования карбидов за счет удаления примесного кислорода (возможно также предварительное образование небольшого количества связей металл – углерод).

Таким образом, наличие в композициях карбидообразующих металлов (в том числе в составе интерметаллидов) даже при небольшом превышении температуры полного выделения водорода из гидрированных композитов (800 K) приводит к деструкции фуллереновых структур. Наблюдаемое при этом образование карбидов металлов и металлических фаз снижает емкость композитов по водороду и обратимость сорбции – десорбции. Устранение этого нежелательного для систем хранения водорода эффекта может заключаться в определении верхней допустимой границы для температуры нагрева композиционного материала, а также в поиске материалов, для которых образование карбидов затруднено или невозможно.¹⁰¹

Одним из наиболее существенных препятствий на пути технической реализации аккумуляторов водорода на основе фуллеренов является выделение большого количества тепла при адсорбции водорода компактированным фуллеритом,²⁸ которое в сочетании с низкой теплопроводностью последнего приводит к его механическому разрушению, а также замедлению и неполноте насыщения водородом. Использование компактированных смесевых композиций водородсорбирующих металлов или интерметаллидов с фуллеритом позволяет справиться с этой задачей. Другими достоинствами смесевых композиций является существенное смягчение условий гидрирования двойных связей молекул фуллеренов, возможность многократного повторения цикла «гидрирование-дегидрирование» и способность катализатора гидрирования поглощать водород. Все это делает рассмотренные выше смеси перспективными в прикладном отношении.

III. Свойства гидридов фуллеренов

1. Стабильность гидридов фуллеренов

С самого начала исследований фуллеренов химики стремились получить полностью прогидрированную молекулу С₆₀Н₆₀, однако до сих пор этого не удалось достичь. 29, 45, 56, 80-85 Как правило, во всех экспериментах получаются смеси гидридов фуллеренов, причем главными продуктами обычно оказываются С60H36 и С70H36. Эти полигидрофуллерены являются наиболее стабильными и согласно теоретическим расчетам. 47, 58, 102-106 Однако даже они медленно разлагаются в растворе, что затрудняет их детальное исследование с помощью спектроскопических методов.^{45, 56, 107} Твердые образцы гидридов фуллеренов даже при одинаковой брутто-формуле, но синтезированные различными методами, сильно отличаются по растворимости, устойчивости по отношению к действию света и воздуха, способности к продолжительному хранению и другим свойствам,^{29, 45, 59, 61, 80-85} что вызвано, по-видимому, как структурными отличиями самих полигидрофуллеренов, так и присутствием в составе твердых образцов гидридов фуллеренов различного количества кристаллизационных растворителей, примесей компонентов каталитических систем гидрирования, а также наличием неоднородностей и дефектов в молекулярной структуре. Например, ТГА и эмиссионная ИК-спектроскопия показали, что полученные в условиях радикального гидрирования гидриды фуллеренов начинают разлагаться при 350°C,⁶¹ а образец С₆₀H₃₆, полученный при восстановлении по Берчу,²⁹ начинал темнеть уже при 170°С.

Причинами, приводящими к нестабильности гидрофуллеренов,^{38, 40, 45, 56} могут быть также напряжения во вновь образовавшихся циклах из-за нарушения sp^3 -гибридизации атома углерода, появление двойных связей 5-6 (рис. 4), пространственное влияние атомов водорода друг на друга при их большом числе.

Нестабильность $C_{60}H_{60}$ должна быть связана, главным образом, с отклонением конфигурации связей атомов углерода от правильной тетраэдрической. В этой молекуле на поверхности сферы находятся 20 стерически напряженных циклогексановых фрагментов. По данным молекулярно-

Рис. 4. Схема 1,2- (*a*) и 1,4-присоединения (*b*) ХҮ к молекуле фуллерена.

механических расчетов напряжение может быть уменьшено, если по крайней мере 10 атомов водорода в молекуле $C_{60}H_{60}$ будут присоединены эндоэдрально — это наиболее устойчивая конформация для $C_{60}H_{60}$.¹⁰⁸ Различие энергий между этим конформером и соединением, в котором все атомы водорода присоединены экзоэдрально, составляет 400 ккал · моль⁻¹.

В работе ¹⁰⁹ проведен теоретический анализ путей преимущественного протекания реакций галогенирования и гидрирования фуллеренов. При взаимодействии фуллерена с фтором более существенными оказываются электронные эффекты; присоединение фтора проходит преимущественно в орто-положения 5-6 или 6-6 связей, хотя, согласно теоретическому анализу 1,4-присоединение (рис. 4) также возможно. В то же время при взаимодействии С₆₀ с бромом наиболее стабильный изомер получается в результате 1,4-присоединения, а направление реакции гидририрования фуллерена является промежуточным между направлениями реакций с фтором и бромом.

2. Состояние водорода в твердых гидридах фуллеренов

При прямом синтезе твердых гидридов фуллеренов в атмосфере водорода при высоком давлении в отсутствие растворителей и катализаторов обеспечивается получение наиболее стабильных образцов. 59, 110 Такие образцы являются наиболее пригодными для изучения природы связывания водорода фуллеренами в твердой фазе. Интерес к этому вопросу стимулируется принципиальной возможностью капсулирования молекул водорода или в межмолекулярных полостях кристаллической структуры гидридов фуллеренов, или внутри полигидридного углеродного каркаса. Подтверждением этих гипотез служат экспериментальные наблюдения, сделанные исследователями компании «MER Corporation» (США). При электрохимическом катодном насыщении водородом фуллерита С₆₀ образуются соединения, содержащие от 24 до 56 атомов водорода на одну молекулу С₆₀, причем часть этого водорода не связана ковалентно и относительно легко удаляется, при этом сопряжение двойных связей в молекуле фуллерена сохраняется даже для брутто-состава С₆₀Н₅₆.²⁸ Сообщается (без экспериментальных подробностей) о получении соединений сверхстехиометрического состава $C_{60}H_{60+x}$ (*x* достигает значения 24) путем гидрирования фуллерита в области умеренно высоких температур и давлений водорода, причем в этих соединениях целостность углеродного каркаса молекулы фуллерена сохраняется.¹¹¹ Этот интригующий результат может означать, что в условиях реакции молекулы водорода могут проникать через циклогексановые фрагменты оболочки пергидрированного фуллерена $C_{60}H_{60}$ в его внутреннюю полость и накапливаться в ней. Несомненно, что эта возможность заслуживает детального изучения.

Обработка фуллерита C₆₀ водородом ($P_{H_2} = 14$ МПа) при комнатной температуре приводит лишь к образованию твердого раствора внедрения молекулярного водорода, т. е. соединения, в котором тип упаковки молекул фуллерена в кристалле остается неизменным при незначительном изменении параметров решетки.¹¹² Образования связей С-Н или новых фаз внедрения с измененным по сравнению с исходным фуллеритом типом упаковки молекул С₆₀ в этих условиях не наблюдается.

В аналогичном прямом некаталитическом твердофазном синтезе при 600 К водород активно взаимодействует с С₆₀, гидриды состава $C_{60}H_x$ с x = 2-18 (при давая $P_{\rm H_2} = 50-80~{
m M\Pi a})^{59}$ и $x \approx 23~($ при $P_{\rm H_2} = 0.6~{
m \Gamma\Pi a}).^{110}$ Полученные таким образом гидриды длительное время хранятся без существенного изменения состава и свойств. Применяемые в работах 59,110 давления не превышали порогового значения 0.7 ГПа, при котором при температуре 600 К начинается объемная полимеризация фуллерена С₆₀ с образованием С-С-связей между соседними молекулами фуллеренов.113 Температура синтеза также была ниже начального уровня 950-1000 К температурного диапазона необратимой деградации гидридов фуллеренов, полученных разными методами. 59, 110 Этим достигалась целостность молекул фуллеренов в гидрированных образцах.¹¹⁰ Содержание водорода в таких образцах относительно невысоко, 59, 110 но возможности его увеличения при сохранении целостности углеродного каркаса С₆₀ до конца не исчерпаны.

В работе ¹¹⁰ предпринята попытка установить состояние водорода в гидриде фуллерена. С этой целью камеру с образцом после высокотемпературной обработки при высоком давлении водорода охлаждали,¹¹⁰ и образец извлекали непосредственно в жидком азоте. Затем нагревали «закаленный» образец в калиброванном откачанном объеме до 300 К, при этом наблюдалось выделение водорода в количестве 2.8 атома на одну молекулу С₆₀. Полученный таким образом «отожженный» образец содержал ковалентно связанный водород в количестве примерно 23 атомов H на одну молекулу С₆₀.

Кристаллографические данные свидетельствуют об одинаковом типе упаковки (объемно-центрированная кубическая решетка) молекул C_{60} в закаленном и отожженном образцах. При этом объем, приходящийся на одну молекулу $C_{60}H_x$ в отожженном образце, на 61 Å³ меньше, чем в закаленном. Таким образом, удельный объем водорода, выделившегося при отжиге, составил 61/2.8 \approx 22 Å³ на один атом H, что близко по величине к удельному объему твердого молекулярного водорода при 4.5 К (19.022 Å³ на один атом H). Этот факт указывает на то, что выделившийся водород присутствовал в закаленном образце в виде молекул водорода, занимающих межузельные полости в решетке $C_{60}H_x$. Есть указания, что это не октаэдрические, а тетраэдрические межузлия объемно-центрированной кубической решетки.¹¹⁰

Состояние водорода в гидриде фуллерена было изучено также методами спектроскопии неупругого рассеяния нейтронов.¹¹⁰ Полученный в работе ¹¹⁰ при 85 К вращательный спектр внедренных в межузлия молекул водорода содержит четкие полосы поглощения, соответствующие переходам с изменением вращательного квантового числа $0 \to 1, 1 \to 2$ и 0→2. Таким образом, внедренные молекулы водорода существуют как в виде параводорода, так и ортоводорода (при 85К их равновесное соотношение составляет 85:15). Вращательные спектры внедренного водорода несколько отличаются от спектров свободных молекул, что является следствием взаимодействия водородного ротатора с окружающими полость молекулами C₆₀H_x (x ~ 23). Аналогичные отличия имеют место в случае вращательного спектра молекулярного водорода, захваченного в аморфном углероде. 114, 115 Однако в последнем случае вращательные полосы более широкие, что свидетельствует, по-видимому, о наличии набора мест локализации молекул водорода с различными потенциалами взаимодействия с ротатором. Напротив, в твердом гидриде фуллерена $C_{60}H_x(H_2)_{1.4}(x \sim 23)$ такое место, по-видимому, одно.

Межмолекулярным взаимодействием в $C_{60}H_x$ ($x \sim 23$) отвечают колебания в низкочастотной области спектра (от 0

до 65 см⁻¹).¹¹⁰ Отмечены некоторые отличия в спектрах межмолекулярных колебаний в твердых $C_{60}H_x$ ($x \sim 23$) и C_{60} , обусловленные наличием анизотропии момента инерции молекулы $C_{60}H_x$, приводящей к расщеплению полос либрационных колебаний, а также гораздо более высокой дисперсией либрационных мод гидрированного C_{60} по сравнению с чистым C_{60} . Однако несмотря на эти незначительные различия, спектры C_{60} и $C_{60}H_x$ весьма похожи в этом диапазоне, что несколько удивительно, если учитывать отличие структур молекул и типа кристаллических решеток (простой кубической для $C_{60}H_x$ ($x \sim 23$)).¹¹⁰

3. Структура и изомеры гидридов фуллеренов

Гидрид $C_{60}H_{36}$ был впервые получен весьма нетрадиционным способом, а именно восстановлением двойных связей C = C по Берчу. В связи с этим предполагалось, что гидрид $C_{60}H_{36}$ содержит в молекуле 12 изолированных двойных связей, по одной в каждом пятичленном цикле.²⁹ Однако впоследствии соединения состава $C_{60}H_{36}$ были получены и в других условиях.^{45, 56, 61, 80–84} Кроме того, структура с изолированными двойными связями для гидрида фуллерена $C_{60}H_{36}$ не объясняет ингибирования восстановления после присоединения 36 атомов водорода к C_{60} .

Наиболее симметричный изомер $C_{60}H_{36}$ имеет 12 двойных связей, которые располагаются в каждом пятичленном кольце, и относится к группе симметрии T_{h} .^{29,116} Введение двойных связей в шестичленные кольца приводит к структуре с более низкой точечной группой симметрии T, в которой имеются четыре бензеноидных фрагмента на поверхности молекулы $C_{60}H_{36}$, локализованные по углам тетраэдра.^{102–104} Промежуточными между этими крайними структурами являются менее симметричные структуры с симметрией D_{3d} и S_{6} ,^{61,116} в которых присутствуют по два шестичленных кольца из безводородных углеродных атомов, локализованных на полюсах молекулы вдоль оси третьего порядка. Остальные шесть двойных связей изолированы и расположены вдоль меридианов и параллелей сфер в D_{3d} и S_6 соответственно (рис. 5).

Проанализированы структура и стабильность 63 изомеров $C_{60}H_{36}$ (общее число изомеров $C_{60}H_{36}$ равно $6.1 \cdot 10^{14}$, но после введения ряда ограничений, в том числе оси третьего порядка, оно уменьшается до 63); один из них имеет тетрагональную *T*-симметрию, четыре — D_{3d} -симметрию, три — S_6 -симметрию, девять — C_{3v} -симметрию и 4 изомера —

симметрию $C_{3.}^{117}$ Детальный теоретический анализ структур $C_{60}H_{36}$ подтвердил, что изомеры с симметрией молекулы D_{3d} и T являются наиболее стабильными.

Полуэмпирическим методом локального функционала плотности (LDF) проведен расчет относительных энергий, электронной структуры и геометрии четырех изомеров молекулы $C_{60}H_{36}$ (рис. 5): симметрии T, T_h, S_6 и D_{3d} .¹⁰⁵ Найдено, что изомер с Т-симметрией энергетически наиболее стабилен, что согласуется с полуэмпирическими расчетами АМ1,104 согласно которым этот изомер стабильнее изомера с симметрией T_h на 0.7 эВ. Возможно, что стабильность изомера симметрии Т, связанная с наличием ароматических колец, является причиной ингибирования более глубокого восстановления фуллерена.⁵⁸ Для структуры молекулы С₆₀Н₃₆ с Т-симметрией характерны наименьшее разрушение исходного скелета фуллерена и наибольший выигрыш энергии делокализации электронов. Кроме того, она лучше согласуется с имеющимися экспериментальными данными. 103 Оставшиеся ненасыщенные связи в изомере Т-симметрии являются связями 6-6. Ионизационные потенциалы всех изомеров С60Н36 укладываются в диапазон значений 6.47 ± 0.05 эВ, а сродство к электрону равно -0.24 ± 0.03 эВ (табл. 3).

Таблица 3. Энергетические характеристики изомеров С₆₀Н₃₆.¹⁰⁵

Симмет- рия	Относи- тельные энергии, эВ ^а	Иониза- ционный потенциал, эВ	Сродство к элект- рону, эВ	B3MO	НСМО
T_h	2.10	6.49	-0.27	$27t_{\rm u}$	$7a_{\rm u}$
Т	0.00	6.52	-0.21	17e	50 <i>t</i>
D_{3d}	2.35	6.48	-0.23	$33e_{\rm u}$	$34e_{g}$
S_6	0.43	6.40	-0.23	33 <i>e</i> _u	$34e_{\rm u}$

Теоретические расчеты $^{102-106}$ показывают, что сопряженная структура должна быть наиболее стабильной. Существенно, что некоторые из восьми изомеров $C_{60}H_4$, которые существуют и выделены, ^{38, 42} могут быть дополнены до *T*-изомера $C_{60}H_{36}$ при дальнейшем восстановлении без какой-либо перестройки не вовлеченных в реакцию двойных связей молекулы. Гидрид $C_{60}H_{36}$ может быть получен также при восстановлении октаэдрического $C_{60}H_{12}$, который присутствует среди продуктов гидрирования.

Поскольку $C_{70}H_{36}$, подобно $C_{60}H_{36}$, отличается высокой стабильностью по отношению к дальнейшему восстановлению, по-видимому, могут существовать общие причины, объясняющие эту особенность. В частности, стерические причины (взаимное отталкивание атомов водорода) не должны быть определяющими, так как если 36 атомов водорода обеспечивают максимальную устойчивость экзоэдрального гидрида фуллерена C_{60} , то в случае C_{70} максимальное число атомов водорода, которое может быть присоединено к углеродному остову без существенного повышения общей энергии, должно быть больше.

Для объяснения особенностей молекулы $C_{70}H_{36}$ проведен теоретический анализ структур A-C (рис. 6).⁵⁸

1. Структуры **A** и **C** имеют симметрию C_s , структура **B** — симметрию C_2 . Последняя структура является наиболее равномерно гидрированной и имеет по 18 атомов водорода на каждом полушарии молекулы.

2. Рассчитанные значения энергий резонанса позволяют предположить, что гидрид $C_{70}H_{36}$ существует в виде смеси трех изомеров, причем соединение со структурой **В** должно преобладать в соответствии с его высокой симметрией.

3. Так же как в фенантрене присоединение по 9,10-связи приводит к небольшому изменению энергии резонанса, так и присоединение к аналогичным связям фенантреноподобных образований в структурах **A** – **C** приводит к незначительной

Рис. 6. Структурные изомеры $C_{70}H_{36}$.⁵⁸

потере сопряжения (80 кДж·моль⁻¹ на каждую двойную связь $C^{16}-C^{17}$ и $C^{28}-C^{29}$ в A; $C^{16}-C^{17}$ и $C^{61}-C^{62}$ в B; 94 кДж·моль⁻¹ для связи $C^{65}-C^{66}$ в изомере C). Модель предсказывает образование $C_{70}H_{38}$ и в меньшей степени $C_{70}H_{40}$ при дальнейшем гидрировании, что и подтверждается экспериментом.^{56, 80, 84}

4. Структуры **A**-**C** могут быть получены при восстановлении реально существующих изомеров C₇₀H₄.^{38, 42}

Дальнейшее восстановление устойчивых C₆₀H₃₆ и C₇₀H₃₆ становится возможным лишь путем преодоления высокого энергетического барьера, соответствующего, по-видимому, реакции гидрирования шестичленных фрагментов.⁵⁸ В таком случае, для С₆₀Н₃₆ восстановление должно идти путем ступенчатого гидрирования с образованием гидридов С₆₀Н_{36+n} (n = 6, 12, 18, 24), причем имеются экспериментальные доказательства существования соединений C₆₀H₄₂ и С₆₀Н₄₈.^{47,83} Для структур **А** и **В** состава С₇₀Н₃₆ восстановление должно идти по пути поэтапного гидрирования с образованием гидридов $C_{70}H_{36+n}$, а именно как $C_{70}H_{46} \rightarrow$ $C_{70}H_{52} \rightarrow C_{70}H_{58} \rightarrow C_{70}H_{64} \rightarrow C_{70}H_{70}$, а для структуры C – как $C_{70}H_{42} \rightarrow C_{70}H_{46} \rightarrow C_{70}H_{52} \rightarrow C_{70}H_{58} \rightarrow C_{70}H_{64} \rightarrow C_{70}H_{70}$. Поскольку при образовании С70H70 из С70H36 происходит бо́льшая потеря резонансной энергии (~1060 или $\sim 31~{\rm кД}{\rm w}\cdot{\rm моль}^{-1}$ на каждую С = С-связь), чем при образовании $C_{60}H_{60}$ из $C_{60}H_{36}$ (~ 602 или $\ \sim 25\ {\rm кДж\cdot моль^{-1}}$ соответственно), то получение пергидрофуллерена С70H70 кажется еще более затруднительным. ⁵⁸

Из сказанного выше следует, что в принципе могут существовать три устойчивых изомера С₇₀Н₃₆, а именно, два изомера с двумя фенантреноподобными и одним бензеноидным кольцами и один изомер с одним фенантреноподобным и одним нафтеноидным кольцами. Повышенная стабильность таких структур, связанная с наличием ароматических фрагментов, препятствует их дальнейшему восстановлению.

Вопросу устойчивости различных структур гидридов фуллеренов $C_{60}H_{36}$ и $C_{70}H_{36}$ посвящена также работа ¹⁰⁶. Результаты расчета показали, что энергия образования изомера $C_{60}H_{36}$ симметрии *T* ниже на 97.4 ккал моль⁻¹, чем энергия образования T_h -изомера, что подтверждает общий вывод других работ (например,¹⁰²) о том, что реальная структура $C_{60}H_{36}$ имеет *T*-симметрию. Для $C_{70}H_{36}$ рассматриваются структуры, в которых атомы водорода локализуются на полюсах молекулы в 1,2,3-положениях 12 пятичленных колец. Поскольку в этом случае в экваториальной области фуллеренового остова формируется графитоподобная область с высоким сопряжением, изомеры, отвечающие такой модели, должны обладать низкими энергиями образования.

Структура $C_{70}H_{36}$ была рассчитана также методами молекулярной механики,⁴⁷ исходя из предположения, что после восстановления продукт реакции содержит только несопряженные или подобные ароматическим двойные связи, нереакционноспособные по отношению к переносу водорода.⁴⁴ В каждом из 12 пятичленных колец углеродного кластера имеется по одной двойной связи; по одной двойной связи находится также на полюсах молекулы $C_{70}H_{36}$, а оставшиеся 10 циклопентеновых колец объединяются таким образом, что образуется пентафениленовый пояс в экваториальной области. Рассчитана энтальпия образования гидрида $C_{70}H_{36}$ (отвечающего предложенной модели), которая оказалась равной $\Delta H_{6}^{\circ}(r) = 490.2$ ккал моль⁻¹. Дальнейшее восстановление $C_{70}H_{36}$ с образованием $C_{70}H_{40}$ приводит к увеличению $\Delta H_{6}^{\circ}(r)$ до 535.7 ккал моль⁻¹.

4. Электронные и ИК-спектры гидридов фуллеренов

Низшие гидриды фуллеренов, например $C_{60}H_2$, сохраняют структуру C_{60} , что отражается в их спектрах УФ и видимого диапазона.³³ Характерным признаком образования дигидрида (продукта 1,2-присоединения) является появление в электронном спектре полос при ~ 430 и ~ 700 нм³⁹ (436 и 702 нм для $C_{60}H_2$). Образование $C_{60}H_4$ (присоединение H_2 ко второй двойной связи) сопровождается исчезновением полосы при 700 нм. Поглощение при 220 (230) нм характерно для $C_{60}H_{36}$.^{29,45} Наиболее детальные спектры для $C_{60}H_{36}$, полученных при восстановлении соответствующих фуллеренов в насыщенном растворе гексана

(инертная атмосфера) в системе Zn/конц. HCl, приведены в работе 56 (см. рис. 3).

Наличие поглощения в области 255–280 нм рассматривается как указание на присутствие ароматических фрагментов бензольного типа в С₆₀H₃₆ и фенантреноподобных в С₇₀H₃₆.⁵⁸ Присутствие этих фрагментов в молекуле гидрида фуллерена доказывается по появлению полосы с переносом заряда в соединениях типа С₆₀H₃₆ · ТЦЭ (ТЦЭ — тетрацианоэтилен).¹⁰⁷

ИК-Спектры гидрированных производных фуллеренов согласуются с наличием С-Н- и С=С-связей. Так. в ИК-спектрах гидридов фуллеренов присутствуют полосы в области валентных колебаний С-Н (табл. 1) — слабые в случае низших гидридов и сильные для С₆₀Н₃₆ и С₇₀Н₃₆, причем число полос в случае C₆₀H₃₆ зависит от метода получения гидрида. Например, ИК-спектр гидрида С₆₀Н₃₆, полученного методом радикального гидрирования, состоит из трех сильных полос валентных колебаний С-Н и слабой полосы при 1490 см⁻¹ (наряду с другими, более слабыми полосами).⁶¹ Полосы при 1490, 1511 и 1606 см⁻¹ для С₆₀Н₃₆, полученного методом некаталитического переноса атомов водорода от донора к акцептору,45 лежат в области валентных колебаний C=C-связей.⁶¹ Отмечается, что интенсивность колебания С = С-связи в области 1650 см⁻¹ уменьшается при восстановлении в более жестких условиях.⁸³

Для молекулы $C_{60}H_{36}$ симметрии T_h в ИК-спектре должно наблюдаться только одно активное колебание C-H, а для молекул симметрии D_{3d} и C_{3i} можно ожидать, по крайней мере, 5 и 17 колебаний соответственно. Данные ЯМР¹³ С, а также сопоставление экспериментального и расчетных ИК-спектров для $C_{60}H_{36}$ позволили авторам⁶¹ сделать предварительное заключение о соответствии полученного ими гидрида $C_{60}H_{36}$ симметрии D_{3d} , а не T_h . Вместе с тем для более точного отнесения полос и ИК-, и ЯМРисследования, вероятно, следует проводить на индивидуальных образцах гидридов фуллеренов C_{60} и C_{70} , синтезированных по методу радикального гидрирования.

В ИК-спектре гидрида фуллерена $C_{60}H_{36}$, полученного при восстановлении по Берчу, присутствуют полосы, характерные как для алифатических С–Н так и для ароматических С=С-связей. При сравнении экспериментальных ИК-спектров со спектрами, рассчитанными для структур *T* и T_h , обнаружено, что они находятся в лучшем сооответствии со структурой симметрии *T*.¹⁰⁷

В полигидриде $C_{60}H_x$, содержащем ~ 23 атома H, выделены ¹¹⁰ валентные колебания углеродного остова при 242, 306 (с), 453 (с), 524, 783 и 912 см⁻¹. По сравнению с колебаниями чистого C_{60} , эти колебания имеют значительно более низкие частоты и существенно отличаются по распределению интенсивностей, что подтверждает ожидаемое ослабление связей С–С и понижение симметрии молекулы в результате гидрирования двойных связей. Деформационные колебания связей С–H в гидриде $C_{60}H_{23}$ характеризуются интенсивной широкой ($\Delta v_{1/2} = 280$ см⁻¹) полосой поглощения при 1250 см⁻¹ с плечом в области 1090 см⁻¹ (см.¹¹⁰). Аналогичный пик характерен для гидрированного аморфного углерода, ^{114, 115} что указывает на сходство С–H-связей в обеих структурах.

5. Масс-спектрометрия в исследовании гидридов фуллеренов

Поскольку при идентификации продуктов гидрирования фуллеренов определяющую роль играет масс-спектрометрический анализ, а методики анализа, различающиеся по способу испарения пробы и способу ее ионизации, могут влиять на результат, то необходимо осторожное отношение к данным масс-спектрометрии. В работах ^{29, 30} при идентификации продуктов восстановления С₆₀ по Берчу наиболее полно выявлено влияние различий в методике анализа на его результаты. Состав С60Н36 был впервые определен по данным ЭУ-MC.²⁹ При ионизации молекул достаточно мягким электронным ударом в газовой фазе образуются катионрадикалы, внутренняя энергия которых невелика — 2-8 эВ (200-775 кДж), что недостаточно для эффективного протекания фрагментации возбужденных частиц. Поэтому этот метод ионизации вполне пригоден для решения ряда задач, связанных с определением структуры молекулы гидрида. Однако метод ЭУ-МС имеет ряд недостатков: он в сочетании с наиболее доступным способом испарения из ячейки Кнудсена он применим только для анализа термически стабильных летучих органических соединений; кроме того, в некоторых случаях фрагментация образующихся при ЭУ нечетноэлектронных ионов протекает настолько эффективно, что масс-спектры не содержат молекулярного иона. Использование методик ЭУ-МС и ЛД-МС для исследования С₆₀Н₃₆, полученного по методу радикального гидрирования, оказалось невозможным из-за термического разрушения С₆₀Н₃₆ до более низкомолекулярных соединений: С₆₀Н₁₈, С₆₀Н₈ и др.⁶¹ Отщепление водорода от неустойчивых гидридов фуллеренов (С₆₀Н_n, n > 36) при лазерной десорбции отмечается также в работе 47 .

Одним из важнейших методов «мягкой» и селективной ионизации является химическая ионизация (ХИ), которая обычно осуществляется в результате ионно-молекулярных реакций между нейтральными молекулами анализируемых веществ и ионами газа-реагента (наиболее часто используют метан, изобутан, аммиак). Ионы газа-реагента, как правило, получают при бомбардировке электронами с энергией 100-500 эВ при давлении в источнике ионов $10-10^{-2}$ Па. В результате столкновений образующихся ионов с молекулами газа-реагенты (CH₃⁺ и CH₅⁺ из метана), которые вступают затем в реакцию с молекулами анализируемых веществ. Они протонируют молекулы анализируемых веществ или образуют с ними ионы-аддукты, например:

$$\begin{array}{rcl} CH_5^+ + M & \longrightarrow & CH_4 + MH^+, \\ CH_3^+ + M & \longrightarrow & MCH_3^+. \end{array}$$

Четноэлектронные ионы, генерируемые при химической ионизации, более стабильны, чем нечетноэлектронные ионы, образующиеся при ЭУ, поэтому масс-спектры ионов, генерируемые в результате ХИ, содержат интенсивные пики ионов аддуктов (или кластерных ионов) или протонированных ионов, а пики осколочных ионов малоинтенсивны или совсем отсутствуют.

Для анализа нелетучих и термически нестабильных соединений используются такие методы ионизации, как полевая десорбция, масс-спектрометрия вторичных ионов, бомбардировка быстрыми атомами, лазерная десорбция и др.¹¹⁸ При использовании ПД-МС не требуется перевода пробы в газовую фазу. Пробу из раствора или суспензии наносят на активированный эмиттер, температуру эмиттера подбирают так, чтобы обеспечить достаточную интенсивность в спектре пика молекулярного иона при минимальной фрагментации (обычно 300–600 K). Иногда непрямой нагрев эмиттера с помощью лазера оказывается более эффективным в плане образования молекулярных ионов.

В работе⁴⁵ проведено масс-спектрометрическое исследование гидридов фуллеренов с использованием различных методик, в том числе ЭУ, ББА и ПД. Для $C_{60}H_{36}$, $C_{60}D_{36}$, $C_{60}H_{18}$ и $C_{60}D_{18}$ в спектрах обычно присутствуют пики М⁺ и иногда M²⁺. Отмечается, что при анализе указанных гидридов методом ЭУ наблюдается частичная фрагментация, сопровождающаяся потерей водорода и появлением свободного C_{60} . Метод ПД дает только пик М⁺. Метод ББА дал хорошие результаты при анализе дигидрида фуллерена, приготовленного восстановлением C_{60} дибораном, но применение его для других образцов гидридов оказалось затруднительным (см., например,^{38, 87}).

С использованием «мягких», взаимодополняющих друг друга масс-спектрометрических методик, таких как времяпролетная масс-спектрометрия с испарением вещества лазерной десорбцией с последующей лазерной фотоионизацией, масс-спектрометрия ионно-циклотронного резонанса с лазерной десорбцией и масс-спектрометрия вторичных ионов найдено, что в ходе восстановления С₆₀ по Берчу, в действительности образуется смесь полигидрофуллеренов состава от С₆₀Н₁₈ до С₆₀Н₃₆, причем основным продуктом является C₆₀H₃₂.³⁰ При использовании метода ЛД-ЛИ-МС для анализа гидридов фуллеренов в интервале масс 740-760 а.е.м. разрешение прибора оказалось недостаточным для получения распределения гидридов по массе. Тем не менее масс-спектр, полученный с помощью ЛД-ЛИ-МС, не дает доказательств формирования C₆₀H₃₆ в качестве основного продукта. Метод ИЦР-МС позволил получить спектр с хорошо разрешенной серией пиков, группирующихся вокруг основного пика с массовым числом 753 (752 + H⁺), соответствующий распределению продуктов реакции. Появление слабых пиков в интервале *m*/*z* 720-730 связывается с фрагментацией продуктов до низкомолекулярных гидрофуллеренов. Наконец, смесь была охарактеризована с использованием методики МСВИ, давшей очень хорошо разрешенный спектр, из которого было получено наиболее точное распределение продуктов гидрирования (рис. 7).³⁰

Рис. 7. Масс-спектр продуктов восстановления С₆₀ по Берчу, полученный с использованием масс-спектрометрии вторичных ионов (матрица — 3-нитробензиловый спирт).³⁰

Таким образом, различие состава гидридов фуллеренов ^{29, 30} часто связано с различием методик масс-спектрометрического анализа и объясняется термической лабильностью смеси гидрированных фуллеренов при длительном воздействии повышенной (> 250°C) температуры, необходимой для масс-спектрометрического исследования, использующего метод прямого введения нагретой пробы.

6. Спектроскопия ЯМР ¹Н и ¹³С

В спектре ЯМР¹Н гидрида 1,2-С₆₀H₂ присутствует синглет при δ 5.93 м. д. (толуол-d₈), не изменяющийся в интервале от -80 до 100°С. В то же время хорошо разрешенных и стабильных во времени спектров ЯМР¹Н ни для С₆₀H₃₆, ни для С₇₀H₃₆ нет. Широкие полосы с δ в области от 2.5 до 4.2 м. д. с максимумом при 3.80 м. д. (для сравнения значение δ для протонов додекаэдрана равно 3.38 м. д.), которые относят к C₆₀H₃₆,^{29,45} плохо согласуются с симметричной структурой, для которой спектр ЯМР¹ Н должен состоять из узких линий.⁵⁶ Приводимые спектры относятся, как правило, или к смесям гидрофуллеренов, или, если речь идет об индивидуальном соединении, к смеси изомеров. Наконец, уширение полос может быть результатом окисления гидридов фуллеренов под действием кислорода воздуха в присутствии света. Попытки получения спектров ЯМР в более концентрированных растворах, например в растворе CS₂ (смесь растворителей CS₂-C₆D₆ использовалась в случае низших гидридов фуллеренов типа C₆₀H₄³⁸), оказались безуспешными из-за взаимодействия CS₂ с C₆₀H₃₆, ⁵⁶ впервые

таким образом обнаруженного. Наблюдение хороших спектров при низкой концентрации вещества требует длительного времени, что приводит к разложению образца в присутствии кислорода.¹²⁰ Даже в случае индивидуальных гидридов C₆₀ физико-

Даже в случае индивидуальных гидридов C_{60} физикохимические свойства образцов одного состава, но приготовленных разными методами, различаются, что может быть связано со структурными отличиями.

В спектре ЯМР ¹Н продуктов каталитического гидрирования проявляется сложный мультиплет с δ 2.1–4.25 м.д.⁸³ Для C₆₀H₃₆, полученного по Берчу, приводится спектр ²⁹ с δ 2.5–4.5 м.д. Появление дополнительных сигналов в области 2.1–2.5 м.д., возможно, связано с продуктами более глубокого гидрирования фуллерена.⁸³

В твердотельных спектрах ЯМР¹³С восстановленной смеси C_{60} и C_{70} проявляются, по крайней мере, четыре типа sp^3 -гибридизованных атомов углерода с δ 31, 38, 44 и 49 м. д. и три типа sp^2 -гибридизованных атомов углерода с δ 128, 134 и 138 м. д.⁶¹ Интегрирование дает отношение $sp^2:sp^3 \sim 22:38$. С учетом ошибки интегрирования это соотношение удовлетворительно отвечает наличию гидрида с 36 атомами Н. Проведя анализ спектра ЯМР¹³С, авторы работы ⁶¹ пришли к выводу, что соединение $C_{60}H_{36}$ с таким строением может быть описано структурой симметрии D_{3d} .

Строение гидрида С₆₀Н₃₆, образующегося при восстановлении С₆₀ по Берчу, исследовалось также и в работе ¹⁰⁷. Полученные результаты согласуются с данными работы 29, но интерпретация их различна. Так, в спектре ЯМР¹³С гидрида C₆₀H₃₆, полученного по Берчу, присутствуют сигналы с δ 140 и 40 м. д., которые авторы ¹⁰⁷ относят к ароматическим и насыщенным атомам углерода соответственно. Сигналы углеродов в ароматическом кольце оказались слабее, чем это можно было ожидать (по-видимому, из-за четвертичной природы этих атомов). По мнению авторов,107 эти спектры подтверждают для С60H36 структуру симметрии Т. В УФ-спектре этого соединения имеются полосы при 218 и 275 нм. Авторы¹⁰⁷ считают, что полоса при 275 нм свидетельствует о присутствии в молекуле С₆₀Н₃₆ изолированного ароматического фрагмента (см. также 56). Доказательством наличия такого изолированного бензольного кольца является появление полосы переноса заряда (305 нм) при взаимодействии С₆₀Н₃₆ с тетрацианоэтиленом¹⁰⁷ (в системе бензол-ТЦЭ полоса переноса заряда находится при ~ 300 нм¹¹⁹). Предположено, что в процессе гидрирования первоначально образуется гидрид С₆₀Н₃₆ симметрии T_h с изолированными двойными связями, который путем сигматропных сдвигов трансформируется в термодинамически более стабильную молекулу симметрии Т с изолированными бензольными кольцами. Это предположение подтверждается получением по методу⁴⁵ стабильного в твердом состоянии образца $C_{60}H_{36}$.

В работе ⁶² проведен расчет химических сдвигов ³Не в спектрах ЯМР ³Не для возможных изомеров эндоэдральных комплексов He@C₆₀H₃₆. Расчетные сдвиги для различных изомеров (в скобках приведен тип симметрии) He@C₆₀H₃₆ равны -10.8(T), $-7.4(D_{3d})$, $-6.1(S_6)$, $-3.4(T_h)$ и -5.6 м. д. (D_{3d}) .⁶² Расчет подтверждает также, что хиральная структура *T*-симметрии является наиболее стабильной среди

возможных изомеров $C_{60}H_{36}$ (*T*-структура стабильнее T_h -структуры на 59 ккал·моль $^{-1}$). Авторы 62 предполагают, что экспериментальное исследование соединений типа $He@\,C_{60}H_{36}$ даст новую информацию относительно состава продуктов гидрирования C_{60} .

7. Фотофизические свойства гидридов фуллеренов

При комнатной температуре в растворе толуола исследованы фотофизические свойства трех гидрофуллеренов C₆₀H₂, C₆₀H₄ и 2,3-{1-(3-карбоксипропионилоксиметил)-4метилбут[2]ено}бакминстерфуллерена (2) (последний имеет гидрофильный заместитель, связанный с гидрофобным остовом С₆₀).¹²⁰ Их спектры поглощения в видимой области для основного состояния сравниваются со спектрами метанофуллеренов и метанофуллероидов.[¶] Изменения, наблюдающиеся в спектрах метано- и гидрофуллеренов по сравнению со спектрами С₆₀ и метанофуллероидов, связаны с отличиями в электронной структуре этих молекул (58 и 60 электронов π-типа соответственно). Спектры поглощения молекул $C_{60}H_2$, $C_{60}H_4$ и 2 в триплетном состоянии похожи (λ_{max} ~ 700 нм для $C_{60}H_2$ и 2 и ~ 710 для $C_{60}H_4$). Квантовый выход образования фотосенсибилизированного ${}^{1}O_{2}({}^{1}\Delta_{g})$ в присутствии С₆₀H₂, С₆₀H₄ и 2 близок к единице, как и в случае С₆₀. Высокая эффективность генерирования синглетного кислорода является, вероятно, причиной неоднократно отмеченных деструктивных изменений в структуре гидридов фуллеренов в растворе. 33, 45, 56 Рассчитаны величины молярного коэффициента поглощения молекул С₆₀H₂, С₆₀H₄ и 2 в триплетно-возбужденном состояния, которые равны ~10500 (при 700 нм), ~4800 (при 710 нм) и ~11000 моль · л⁻¹ · см⁻¹ (при 700 нм) соответственно.

8. Кислотность и прочность связи С – Н в гидридах фуллеренов

Для исследования кислотно-основных реакций гидрированных фуллеренов в растворе ДМСО использована вольтамперометрическая методика.¹²¹ В соответствии с работами ^{122, 123}, дигидрофуллерен $C_{60}H_2$ имеет три обратимых пика восстановления (анион-радикал, дианион, трианион) с потенциалами примерно на 0.1 В более отрицательными по сравнению с соответствующими потенциалами C_{60} в смеси ДМСО–толуол (67:33 по объему). Отмечается, что $C_{60}H_2$ медленно разлагается в этой среде до C_{60} . Для депротонирования $C_{60}H_2$ и определения кислотности использовали ряд оснований.

$$C_{60}H_2 + B^- \implies C_{60}H^- + BH_2$$

$$K_1 = \frac{[C_{60}H^-][BH]}{[C_{60}H_2][B]^-}.$$

(В⁻— натриевые соли дихлоруксусной кислоты, сахарина, трифторуксусной кислоты; значения р K_a этих кислот в ДМСО составляют 6.4, 4.0 и 3.45 соответственно).

Найденные значения $pK_a(1)$ и $pK_a(2)$ (первой и второй констант кислотной диссоциации) для $C_{60}H_2$ равны 4.7 и 16 соответственно (ДМСО, 298 К). Константа кислотной диссоциации связи С–Н в Ви⁴С₆₀Н равна 5.7.¹²⁴ Замена *трет*бутильной группы на водород приводит к увеличению кислотности благодаря более сильному электронодонорному характеру *трет*-бутильной группы по сравнению с водородом.

¶ Метанофуллерены и метанофуллероиды отличаются по способу присоединения лиганда к двойным связям фуллерена: присоединение к 6-6-связям с сохранением фуллеренового каркаса и образованием циклопропанового кольца в первом случае и размыкание 6-5-связи в случае метанофуллероидов. Используя чувствительность полосы поглощения при 1080 нм в ближней ИК-области комплекса анион-радикала С₆₀⁻ с γ -циклодекстрином (γ -CD), определили значение р K_a сопряженной кислоты (C₆₀H) в смеси H₂O-PrⁱOH (9:1), которое оказалось равным 4.5 (±0.5).¹²⁵

$$(C_{60}H)$$
·· γ -CD \Longrightarrow C_{60} ·· γ -CD + H⁺

В работе ¹²⁶ для HC_{60}^{\cdot} приведена величина р K_a такого же порядка, что и рассчитанная из данных спектрофотометрического титрования С: сильной кислотой в о-дихлорбензоле. Высокая кислотность НС₆₀ сочетается с низкой прочностью связи С-H (71 ккал · моль⁻¹ для Bu^tC₆₀H¹²⁴). В то же время величина рK_a, равная 9, (ДМСО), полученная для протонированного 4-нитробензойной кислотой анион-радикала C_{60}^{\bullet} , согласуется со значением р $K_a(1)$, полученной в работе 121. Отметим, что квантово-химические расчеты дают значения энергий С-H-связей в С₆₀H₁₂ (73 ккал · моль⁻¹) и $C_{60}H_{18}-C_{60}H_{36}\,(70-71\,{\rm ккал}\cdot{\rm моль}^{-1}),^{104}$ близкие по величине к экспериментальному значению прочности связи С-Н в моногидриде фуллерена.¹²⁴ Расчетное значение средней энергии связи С – Н в С $_{60}$ Н $_{60}$ составляет ~ 62 ккал · моль – 1. Такое снижение вызвано существенными структурными напряжениями в полностью насыщенном углеродном каркасе.¹⁰⁴

Электролиз C_{60} до C_{60}^{2-} с последующим протонированием, является альтернативным свободно-радикальным методом получения $C_{60}H_2$.¹²⁶ Ступенчатое протонирование дианиона показало, что присоединение первого протона происходит легче, чем второго.

Предпринята попытка создания шкалы р*K*_а для ряда гидрофуллеренов.¹²⁷ Рассчитанные значения кислотности подтверждают высказанное в работе² предположение об уменьшении кислотности гидридов фуллеренов с увеличением степени гидрирования. В этом смысле моногидрофуллерен С₆₀Н должен обладать наиболее кислой алифатической С–H-связью.

9. Рентгенофотоэлектронная спектроскопия в исследовании гидридов фуллеренов

Гидрид фуллерена $C_{60}H_{36}$, синтезированный путем восстановления C_{60} дигидроантраценом в расплаве,⁴⁵ был изучен с использованием метода спектроскопии потерь энергии электронов (СПЭЭ).¹²⁸ На рис. 8 представлены функции потерь для $C_{60}H_{36}$ и C_{60} . Обе функции имеют сходную форму, однако максимум, обусловленный осцилляциями всех валентных электронов (($\sigma + \pi$)-плазмон), в случае гидрида (23.8 эВ) расположен ниже по энергии, чем в случае

Рис. 8. Функции потерь для гидрида $C_{60}H_{36}$ (сплошная линия) и фуллерена (прерывистая линия) в спектрах ПЭЭ (EELS).¹²⁸

твердого C_{60} (25.0 эВ). Это означает, что плотность валентных электронов, определяемая величиной этой энергии, при переходе от C_{60} к $C_{60}H_{36}$ уменьшается. При таком переходе заметно уменьшается также относительная интенсивность пика, связанного с возбуждением π -плазмона. При этом энергия потери пика π -плазмона практически не меняется. При увеличении времени облучения функция потерь для $C_{60}H_{36}$ по своей форме становится похожей на функцию для C_{60} , что, по-видимому, связано с выделением водорода из гидрида.

10. Электрохимия гидридов фуллеренов

Во многих отношениях электрохимическое поведение $C_{60}H_2$ подобно поведению фуллерена C_{60} , но $C_{60}H_2$ восстанавливается несколько труднее.¹²² Значения $E_{1/2}$ восстановления $C_{60}H_2$ в различных растворителях приведены в табл. 4.¹²²

Таблица 4. Электрохимическое восстановление $C_{60}H_2$.¹²²

Растворитель ^а	$E_{1/2}$ (C ₆	${}_{0}\mathrm{H_{2}}^{z-}/\mathrm{C_{60}H_{2}}^{(z-)}$	⁺¹⁾⁻), В, отн. 2	Fc ⁺ /Fc
	0/1-	1 - /2 -	2-/3-	3-/4-
PhMe-CH ₃ CN PhCN CH ₂ Cl ₂	-1.05 -1.04 -1.11	-1.44 -1.43 -1.48	-1.99 -2.01 -1.99	-2.36

^а В качестве электролита используется 0.1 М (С₄H₉)₄NPF₆

Электрохимические свойства С₆₀H₂, 1,9- и 7,8-С₇₀H₂ в смеси ДМФА-толуол изучены в работе ¹²³. Для С₆₀H₂ получены значения $E_{1/2} = -1.02$, -1.46, -2.07 и -2.58 В (относительно Fc/Fc⁺). Из-за меньшей растворимости восстановленных изомеров С70H2 в смеси ДМФА-толуол для них можно наблюдать только три последовательных переноса электрона. Так, для 7,8-С70H2 получены значения $E_{1/2} = -1.04$, -1.48 и -1.96 В (относительно Fc/Fc⁺), а для 1,9-С₇₀Н₂ значения 1.03, -1.52 и -1.93 В (относительно Fc/Fc⁺). Электронные эффекты этих отличающихся по стабильности изомеров не отражаются на их электрохимическом поведении. Стабильность восстановленных гидридных производных уменьшается с увеличением заряда, температуры и(или) содержания ДМФА в смеси ДМФА-толуол. Однозарядный анион-радикал C₆₀H₂⁻ оказался самым стабильным из восстановленных соединений (спектр ЭПР C₆₀H² характеризуется g = 2.000, $\Delta H = 3$ Гс при 160 K, а спектр ЭПР C_{60}^{--} имеет g = 1.997, $\Delta H = 5.8 \ \Gamma c$).¹²³

Электрохимическое окисление $C_{60}H_2$ изучено в PhCN. Оно является необратимым и проходит в две стадии. На первой стадии из $C_{60}H_2$ путем потери двух протонов и двух электронов образуется C_{60} , окисляющийся на второй стадии ($E_p = 1.13$ и 1.35 В относительно Fc⁺/Fc соответственно).

11. Реакции гидридов фуллеренов

Анион $C_{60}H^-$ проявляет довольно сильные нуклеофильные свойства. Он образуется при смешивании стехиометрических количеств C_{60} и LiBEt₃H в толуоле.¹²⁹ Метилиодид не алкилирует это соединение,¹²⁹ в то время как $Et_3O^+BF_4^-$ в дихлорметане реагирует с $C_{60}H^-$ с образованием 1,2- $C_{60}(H)(Et)$ с количественным выходом. Спектр ЯМР¹H продукта реакции $C_{60}H^-$ с $Et_3O^+BF_4^-$ в CS_2 – $CDCl_3$ [δ 6.42 (с, 1 H, $C_{60}H$), 3.50 (к, 2 H, CH₂), 2.09 (т, 3 H, CH₃)]¹³⁰ совпадает с описанным в работе ¹³¹. Анион $C_{60}H^-$ протонируется HBF₄ в эфире с образованием 1,2- $C_{60}H_2$, дающего синглет при δ 5.93 в толуоле- d_8 .¹³⁰

Хорошо известное в металлоорганической химии присоединение нуклеофилов к ненасыщенным лигандам в катионных металлокомплексах гладко протекает и в случае реакции $C_{60} H^-,\,$ при этом ненасыщенные лиганды служат мостиком между фуллереном и металлом. 130

$$\begin{split} & [(OC)_{5}Re(\eta^{2}\text{-}C_{2}H_{4})]^{+} + C_{60}H^{-} \longrightarrow \\ & \longrightarrow 1, 2\text{-}C_{60}(H)(-CH_{2}CH_{2}-)Re(CO)_{5}, \\ & [(OC)_{3}Fe(\eta^{5}\text{-}C_{6}H_{7})]^{+} + C_{60}H^{-} \longrightarrow \\ & \longrightarrow 1, 2\text{-}C_{60}(H)(-\eta^{4}\text{-}C_{6}H_{7}-)Fe(CO)_{3}, \\ & [(OC)_{3}Fe(\eta^{5}\text{-}C_{7}H_{9})]^{+} + C_{60}H^{-} \longrightarrow \\ & \longrightarrow 1, 2\text{-}C_{60}(H)(-\eta^{4}\text{-}C_{7}H_{9}-)Fe(CO)_{3}, \\ & [(OC)_{5}Mn(\eta^{6}\text{-}C_{6}H_{6})]^{+} + C_{60}H^{-} \longrightarrow \\ & \longrightarrow 1, 2\text{-}C_{60}(H)(-\eta^{5}\text{-}C_{6}H_{6}-)Mn(CO)_{3}, \\ & [(\eta^{5}\text{-}Cp)Fe(\eta^{6}\text{-}C_{5}H_{4}CH_{2})]^{+} + C_{60}H^{-} \longrightarrow \\ & \longrightarrow 1, 2\text{-}C_{60}(H)(-\eta^{5}\text{-}CH_{2}C_{5}H_{4}-)Fe(Cp\text{-}\eta^{5}). \end{split}$$

В спектрах ЯМР ¹Н этих комплексов проявляется сигнал в диапазоне δ 5.9–6.5 м.д., характерный для соединений 1,2-C₆₀(H)(R).^{3, 132} Масс-спектры продуктов свидетельствуют о том, что распад молекулярных ионов 1,2-C₆₀(H)(RML_x)^{+*} происходит в основном по механизму β-элиминирования с образованием C⁺₆₀. Соединение 1,2-C₆₀(H)[CH₂CH₂Re(CO)₅] распадается в результате двойного β-элиминирования на C⁺₆₀, H₃CCH₂Re(CO)⁺₅ и НRe(CO)⁺₅. Таким образом, в работе ¹³⁰ предлагается удобный метод синтеза металлокомплексов, в которых фуллерен связан с атомом металла не непосредственно, а через углеродный мостик.

IV. Заключение

История изучения гидридов фуллеренов насчитывает всего несколько лет, но, несмотря на предварительный характер многих работ и спорность некоторых выводов, уже сейчас ясно, что этому направлению предстоит долгая жизнь в науке и технологии. Систематические исследования с использованием более совершенных экспериментальных методик и чистых индивидуальных соединений гидридов фуллеренов приведут в ближайшее время к ускорению прогресса в этой области. Как очередной успех в этом направлении можно отметить сообщение об исследовании структуры индивидуального гидрида C₆₀H₁₈ методом ЯМР ¹H.¹³³ Гидрид С₆₀Н₁₈, полученный методом твердофазного гидрирования, имеет, согласно данным ЯМР ¹Н, симметрию $C_{3\nu}$. Изучение методом ДСК термической устойчивости высокочистого С₆₀Н₃₆ показало, что наряду с дегидрированием С₆₀Н₃₀ до С₆₀ происходят процессы деградации углеродного скелета фуллерена.134

Высокий потенциал практического использования систем на основе гидридов фуллеренов также способствует быстрому развитию исследований. Можно, например, предположить возможность создания химических источников тока с использованием гидридных интерметаллид-фуллереновых композиций в качестве катодных материалов, а также обратимых аккумуляторов водорода.

Особо значимую роль гидриды фуллеренов могут сыграть в катализе. Возможность использования широкого температурного диапазона и химической модификации фуллеренов позволяет регулировать их реакционную способность по отношению к водороду. Это имеет принципиальное значение при создании активных катализаторов превращений углеводородов. Например, кристаллические аддукты фуллеренов со щелочными металлами, некоторые представители которых (M_3C_{60}) проявляют сверхпроводящие свойства, способны уже при – 100°С эффективно катализировать реакцию гомоядерного изотопного обмена водорода.¹³⁵ При 300 К и давлении смеси ($H_2 + D_2$) 100 Торр константа

скорости реакции для катализатора Cs₆C₇₀ составляет 10 моль · мин⁻¹. Эта величина в 60 раз больше, чем для соединения цезия с графитом того же состава. Энергия активации реакции равна 11.1 кДж моль⁻¹. В присутствии катализатора Cs₆C₇₀ гидрирование этилена водородом осуществляется уже при 373 K, причем константа скорости при давлении смеси (С2H4 + H_2) 200 Topp равна 0.5 моль мин-1. Предложенный механизм процесса включает диссоциативную адсорбцию молекулы Н2 на углеродном каркасе с образованием гидридов фуллеренов (аналогично протекает активация H₂ на благородных металлах Pt и Pd).135

Дегидрирующая активность фуллереновых катализаторов по отношению к алканам,⁵⁰ в том числе к метану,^{52, 53} проявляемая в диапазоне высоких температур, а также сходное с катализаторами на основе благородных металлов влияние водорода на протекание дегидрирования,⁵³ позволяет рассматривать фуллереновые катализаторы как функциональные аналоги благородных металлов. Возможность широкого варьирования состава фуллеренсодержащих катализаторов и температуры их применения делает фуллереновые структуры перспективными катализаторами разнообразных процессов превращения предельных углеводородов, таких как риформинг, гидрокрекинг, дегидрирование и других, имеющих большое промышленное значение.

Наконец, отметим, что катализ с участием гидридов фуллеренов может, в принципе, вносить вклад в реакцию рекомбинации атомов водорода с образованием H₂, происходящую в межзвездном пространстве.136 Проверку этой фундаментальной гипотезы можно осуществить с помощью лабораторных исследований спектров поглощения и эмиссии гидридов фуллеренов в УФ- и ИК-диапазоне и сравнения с соответствующими неидентифицированными до настоящего времени спектральными характеристиками межзвездного пространства. Другим этапом проверки может стать лабораторное изучение возможности реализации бимолекулярной реакции присоединения атома водорода к фуллереновому остову с радиационным охлаждением возбужденного аддукта. К настоящему времени экспериментально доказано лишь легко протекающее тримолекулярное присоединение атома водорода.136

* * *

Проблема восстановления фуллеренов продолжает интересовать исследователей. Осуществлено электрохимическое ¹³⁷ гидрирование C₆₀ в 30%-ном водном растворе КОН. Катодный потенциал восстановления C₆₀ был найден равным – 1.4 В (относительно Ag/AgCl). Доказано, что в этих условиях образуется C₆₀H₂, хотя выход дигидрида невысок. Гидрирование C₆₀ и дегидрирование C₆₀H_x при электролизе является обратимым.

 $C_{60} + x H_2O + x e^- \implies C_{60}H_x + x OH^-.$

Таким образом, показана принципиальная возможность использования C_{60} в качестве электродного материала для создания аккумуляторов в водной КОН.

Сообщаются предварительные результаты исследования восстановления высших (C_{76} , C_{78} , C_{84}) фуллеренов в системе Zn-конц.HCl-толуол в темноте и в отсутствие кислорода.¹³⁸ Восстановление C₇₆ приводит к C₇₆H₄₆-C₇₆H₅₆, а восстановление C₇₈ (в соответствиии с изомерным составом исходного фуллерена) — к широкому набору продуктов гидрирования, причем C₇₈H₄₈ является основным компонентом. В результате восстановления C₈₄ получены продукты состава C₈₄H₄₈-C₈₄H₅₂. В каждом случае восстановление высших фуллеренов сопровождается деградацией образца и появлением гидридов C₆₀H₃₆ и C₇₀H₃₆-C₇₀H₄₀ (ВЭЖХ), что еще раз подтверждает наибольшую стабильность этих гидридов, при этом восстановленные производные C_{84} являются наименее стабильными.

Фотохимическая реакция ($\lambda = 350$ нм, N₂, 12 ч) C₆₀ с третичными аминами RNMe₂ (R = Ph, Me) приводит к продуктам присоединения амина по связи 6-6 фуллерена.¹³⁹ При дальнейшем облучении реакционной смеси в присутствии избытка C₆₀ аддукт превращается в пирролидиновое производное C₆₀ и 1,2-C₆₀H₂, подтверждая тем самым возможность востановления фуллерена при облучении смесей фуллеренов с органическими соединениями.

Продолжен теоретический анализ гидридов фуллеренов.^{140, 141} Рассматриваются структуры со скошенным пентагонально-пирамидальным расположением атомов водорода. Присоединение водорода к $C_{60}H_6$, $C_{60}H_{12}$ или $C_{60}H_{18}$ происходит в основном в орто-положения, в то время как присоединение брома — преимущественно в пара-положения. Напротив, удаление водорода происходит из пара-, а брома — из орто-положений одной из скошенно-пирамидальных структур. Пентагонально-пирамидальный $C_{60}H_{12}$, трижды пентагонально-пирамидальный с

С использованием ИК-спектроскопии и ЯМР ¹Н показано, что при взаимодействии C_{60} с HIr(C_8H_{12})(PPh₃)₂ атом переходного металла координируется с молекулой C_{60} по 1-2-связи.¹⁴²

Показано,143 что в отсутствие кислорода в темновых условиях и при облучении взаимодействие C₆₀ с H₃Ir(PPh₃)₃ приводит к различным продуктам: при нагревании в толуоле (100°C) — к комплексам иридия с η²-координированным С₆₀, а при облучении в бензонитриле — к окислению иридия C_{60} триплетно-возбужденным $(Nd^{3+}:YAG)$ лазер. $\lambda = 532$ нм). Фотохимическая реакция в бензонитриле приводит к появлению полосы поглощения в ближней ИК-области и сигнала ЭПР для анион-радикала C₆₀ ($\lambda = 1078$ нм и g = 2.0001 соответственно). Тушение триплетно-возбужденного C_{60} комплексом $H_3Ir(PPh_3)_3$ происходит по восстановительному механизму, константа тушения $k_g = 1.1 \cdot 10^9$ моль $^{-1} \cdot c^{-1}$.

В работе¹⁴⁴ отмечается, что появление сигнала с m/z = 780 (см., например.⁸³) в масс-спектре продуктов гидрирования C_{60} при использовании толуола в качестве растворителя, вероятно, связано с образованием триметиленового аддукта гидрида фуллерена $C_{60}H_{18}$, а не с образованием $C_{60}H_{60}$.

Проведены расчеты оптимальных структур и относительной стабильности молекулы $C_{70}H_{36}$ (теплот образования изомеров), которые показали, что наличие ароматических фрагментов на поверхности молекулы не является доминирующим фактором при определении стабильности. Энергия деформации молекулы за счет стерических напряжений, вызванных тем, что ароматические фрагменты должны быть плоскими, по величине может превосходить выигрыш энергии резонанса. Уже предложен ряд структур для $C_{70}H_{36}$ с частично изолированными двойными связями,¹⁴⁵ расчетная теплота образования которых существенно ниже, чем у «ароматических» изомеров. Поиск оптимального сочетания ароматичности и стерических напряжений в изомерах $C_{70}H_{36}$ продолжается.¹⁴⁶

Фотофизические свойства гидридов $C_{60}H_{18}$ и $C_{60}H_{36}$, полученных с чистотой 90–98% по реакции некаталитического переноса атомов водорода от 9,10-дигидроантрацена к фуллерену (transfer hydrogenation)⁴⁵ с последующей сублимационной очисткой, существенно различаются.¹⁴⁷ Спектр поглощения для основного состояния $C_{60}H_{36}$, измеренный в растворе хлористого метилена, свидетельствует о наличии в структуре гидрида изолированных бензеноидных фрагментов, имеющихся в изомерах с точечной группой симметрии *T*, S_6 или D_{3d} , и отсутствующих в наиболее симметричном изомере T_h. Кроме того, рассчитанная для молекулы симметрии T_h энергия более, чем на 2 эВ превышает энергию наиболее устойчивого изомера.¹⁰⁵ Дополнительные сведения о симметрии С60H36 дает теоретико-групповое рассмотрение ИК- и КР-спектров полученных образцов, а также твердофазный спектр ЯМР¹³С, в котором присутствуют сигналы от нескольких различных sp³-гибридизованных атомов углерода, вместо одного сигнала, ожи-даемого для *T_h*-структуры.¹⁴⁷ Анализ всей совокупности данных позволил авторам¹⁴⁷ отвергнуть структуру T_h для С₆₀Н₃₆ и выделить, как наиболее вероятную, структуру S₆-симметрии. Этот вывод отличается от заключения авторов более ранних работ ^{61, 112} о *D*_{3d}-симметрии для образцов С₆₀Н₃₆, полученных путем прямого некаталитического гидрирования при высоком давлении, и изученных методами электронной и рентгеновской дифракции, а также с помощью ЯМР и ИК-спектроскопии, причем спектральные характеристики для этих образцов существенно отличались от полученных в работе 147. Эти различия интерпретированы в работе ¹⁴⁷ как свидетельство того, что разные синтетические методы дают изомеры С₆₀Н₃₆ разной симметрии.

Однако и в пределах одной методики могут, по-видимому, образовываться продукты различного изомерного состава. Так, аналогичное описанному в работе ¹⁴⁷ гидрирование C₆₀ 9,10-дигидроантраценом ¹⁴⁸ приводит к продукту, содержащему в качестве основного компонента изомер C₆₀H₃₆ симметрии *T*. Его твердотельный спектр ЯМР ¹³С содержит три сигнала sp^3 -гибридизованных атомов углерода при 31.1, 37.2 и 44.1 м. д. и три сигнала sp^2 -гибридизованных атомов углерода при 124.9, 134.7 и 137.3 м. д. с соотношением интегральных интенсивностей 36:24.¹⁴⁸

Спектр электронного поглощения С₆₀Н₁₈ в основном состоянии сильно отличается от спектра C₆₀H₃₆¹⁴⁷ и по своей структуре очень близок к спектру С₆₀, что предполагает наличие в молекуле C₆₀H₁₈ аналогичной системы сопряжения *sp*²-гибридизованных атомов углерода, только покрывающих не всю поверхность сферы.¹⁴⁷ Это согласуется с данными анализа спектров ЯМР ¹Н образцов С₆₀Н₁₈, полученных по методу твердофазного гидрирования.¹³³ Спектр поглощения низшего триплета С₆₀Н₁₈, изученный методом импульсного фотолиза в бензоле, 147 также проявляет большое структурное сходство со спектром триплет-триплетного поглощения С₆₀ в бензоле и расположен в идентичном диапазоне длин волн, что подтверждает положение о существенном сохранении в С₆₀Н₁₈ типа сопряжения, имеющегося в исходном С₆₀. Дополнительным аргументом в пользу этого утверждения служит сходство величин времени жизни низшего триплета C₆₀H₁₈ (210 мкс)¹⁴⁷ и C₆₀ (47 мкс) в бен-Квантовый выход образования золе. триплета ϕ_{T} (C₆₀H₁₈) < 0.12, оцененный по данным импульсного фотолиза растворов в бензоле, заметно ниже, чем величина $\phi_{\rm T} \approx 1$ для C_{60} и низших гидридов $C_{60}H_2$ и $C_{60}H_4$ $^{120,\,147}$ Этот факт согласуется с очень слабой флуоресценцией С60, С60Н2 и С₆₀Н₄ (квантовый выход флуоресценции С₆₀ составляет $\sim 10^{-4}$) по сравнению с довольно сильной флуоресценцией С₆₀Н₁₈.¹⁴⁷ Подобная модификация фотофизических свойств за счет все более экстенсивного гидрирования углеродного каркаса С₆₀ может представлять интерес для медицины, биологии и фотоники. К сожалению, фотофизические характеристики триплетного состояния для С₆₀Н₃₆ не удалось измерить: спектр триплет-триплетного поглощения этой молекулы в доступном для измерений интервале длин волн $(\lambda > 300$ нм) отсутствует.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 95-03-08932 и 96-03-34102) и Государственной научно-технической программы «Фуллерены и атомные кластеры».

Литература

- 1. F.Wudl. Acc. Chem. Res., 25, 157 (1992)
- 2. R.Taylor, D.R.M.Walton. Nature (London), 363, 685 (1993)
- A.H.Hirsch. Chemistry of Fullerenes. Ch. 5. Thieme Verlag Publ., Stuttgart, 1994, P.117
- 4. В.И.Соколов, И.В.Станкевич. *Успехи химии*, **62**, 455 (1993)
- A.Hirsch, Q.Li, F.Wudl. Angew. Chem., Int. Ed. Engl., 30, 1309 (1991)
- Н.Ф.Гольдшлегер, А.С.Лобач, А.С.Астахова, М.Г.Каплунов, А.В.Куликов, А.П.Моравский, О.С.Рощупкина, Ю.М.Шульга. Изв. АН. Сер. хим., 1143 (1994)
- А.С.Лобач, Н.Ф.Гольдшлегер, М.Г.Каплунов, А.В.Куликов. Изв. АН. Сер. хим., 103 (1996)
- G.Schick, K.-D.Kampe, A.Hirsch. J. Chem. Soc., Chem. Commun., 2023 (1995)
- Z.S.Klemenkova, V.S.Romanova, V.A.Tsyryapkin, V.E.Muradyan, Z.N.Parnes, B.V.Lokshin, M.E.Vol'pin. Mendeleev Commun., 60 (1996)
- P.J.Krusic, E.Wasserman, P.N.Keizer, J.P.Morton, K.F.Preston. Science, 254, 1183 (1991)
- K.Kniaź, J.E.Fisher, H.Selig, G.B.M.Vaughan, W.J.Romanow, D.M.Cox, S.K.Chowdhury, J.P.McCauley, R.M.Strongin, A.B.Smith III. J. Am. Chem. Soc., 115, 6060 (1993); O.V.Boltalina, A.Ya.Borschevskii, L.N.Sidorov, J.M.Street, R.Taylor. J. Chem. Soc., Chem. Commun., 1997 (in the press)
- Н.Ф.Гольдшлегер, Н.Н.Денисов, А.С.Лобач, В.А.Надточенко, Ю.М.Шульга, В.Н.Василец. Докл. АН, 340, 630 (1995)
- 13. J.M.Hawkins. Acc. Chem. Res., 25, 150 (1992)
- K.M.Creegan, J.L.Robbins, W.K.Robbins, J.M.Millar, R.D.Sherwood, P.J.Tindall, D.M.Cox, A.B.Smith III, J.P.McCauley Jr., D.R.Jones, R.T.Gallagher. J. Am. Chem. Soc., 114, 1103 (1992)
- Y.Elemes, S.K.Silverman, C.Sheu, M.Kao, C.S.Foote, M.M.Alvarez, R.L.Whetten. Angew. Chem., Int. Ed. Engl., 31, 351 (1992)
- M.Fedurco, D.A.Costa, A.L.Balch, W.R.Fawcett. Angew. Chem. Int. Ed. Engl., 34, 194 (1995)
- T.Suzuki, Q.Li, K.C.Khemani, F.Wudl, O.Almarsson. Science, 254, 1186 (1991)
- P.J.Fagan, J.C.Calabrese, B.Malone. Acc. Chem. Res., 25, 134 (1992)
- V.V.Bashilov, P.V.Petrovskii, V.I.Sokolov, S.V.Lindeman, I.A.Gusey, Yu.T.Struchkov. Organometallics, 12, 991 (1993)
- A.L.Balch, V.J.Catalano, J.W.Lee, M.M.Olmstead, S.R.Parkin. J. Am. Chem. Soc., 113, 8953 (1991)
- 21. A.L.Balch, V.J.Catalano, J.W.Lee. Inorg. Chem., 30, 3980 (1991)
- 22. M.Rasinkangas, T.T.Pakkanen, T.A.Pakkanen. J. Organomet. Chem., 476, C6 (1994)
- 23. R.C.Haddon. Acc. Chem. Soc., 25, 127 (1992)
- 24. P.W.Fowler, A.Ceulemans. J. Phys. Chem., 99, 508 (1995)
- M.Häser, J.Almlof, G.E.Scuseria. *Chem. Phys. Lett.*, **181**, 497 (1991)
- C.S.Yannoni, P.P.Bernier, D.S.Bethune, G.Meijer, J.R.Salem. J. Am. Chem. Soc., 113, 3190 (1991)
- 27. R.Taylor. J. Chem. Soc., Perkin Trans. 2, 813 (1993)
- 28. R.M.Baum. Chem. Eng. News, (22), 8 (1993)
- R.E.Haufler, J.Conceicao, L.P.F.Chibante, Y.Chai, N.E.Byrne, S.Flanagan, M.M.Haley, S.C.O'Brien, C.Pan, Z.Xiao, W.E.Billups, M.A.Ciufolini, R.H.Hauge, J.L.Margrave, L.J.Wilson, R.F.Curl, R.E.Smalley. J. Phys.Chem., 94, 8634 (1990)
- M.R.Banks, M.J.Dale, I.Gosney, P.K.G.Hodgson, R.C.K.Jennings, A.C.Jones, J.Lecoultre, P.R.R.Langridge -Smith, J.P.Maier, J.H.Scrivens, M.J.C.Smith, C.J.Smyth, A.T.Taylor, P.Thorburn, A.S.Webster. J. Chem. Soc., Chem. Commun., 1149 (1993)
- A.Govindaraj, A.Rathna, J.Chandrasekhar, C.N.R.Rao. Proc. Indian Acad. Sci., 105, 303 (1993); Chem. Abstr., 120, 297802g (1994)
- M.P.Eastman, C.L.Wyse, J.P.Abe, R.W.Zoellner, R.G.Kooser. J. Org. Chem., 59, 7128 (1994)
- 33. C.C.Henderson, P.A.Cahill. *Science*, **259**, 1885 (1993)
- 34. S.Ballenweg, R.Gleiter, W.Krätschmer. *Tetrahedron Lett.*, **34**, 3737 (1993)

- 35. C.C.Henderson, P.A.Cahill. Chem. Phys. Lett., 198, 570 (1992)
- 36. A.Hirsch, A.Soi, H.R.Karfunkel. Angew. Chem., 104, 808 (1992)
- C.C.Henderson, C.M.Rohlfing, P.A.Cahill. *Chem. Phys. Lett.*, **213**, 383 (1993)
- A.G.Avent, A.D.Darwish, D.K.Heimbach, H.W.Kroto, M.F.Meidine, J.P.Parsons, C.Remars, R.Roers, O.Ohashi, R.Taylor, D.R.M.Walton. J. Chem. Soc., Perkin Trans. 2, 15 (1994)
- 39. C.S.Foote. Top. Curr. Chem., 169, 347 (1994)
- N.S.Schneider, A.D.Darwish, H.W.Kroto, R.Taylor, D.R.M.Walton. J. Chem. Soc., Chem. Commun., 463 (1994)
- В.Д.Махаев, Ю.М.Шульга, А.С.Лобач, В.Н.Василец, О.С.Рощупкина, А.П.Моравский. Изв. АН. Сер. хим., 803 (1993)
- 42. C.C Henderson, C.M.Rohlfing, R.A.Assink, P.A.Cahill. Angew. Chem., Int. Ed. Engl., 33, 786 (1994)
- C.C.Henderson, C.M.Rohlfing, K.T.Gillen, P.A.Cahill. Science, 264, 397 (1994)
- 44. M.Gerst, C.Rüchardt. Chem. Ber., 126, 1039 (1993)
- C.Rüchardt, M.Gerst, J.Ebenhoch, H.-D.Beckhaus, E.E.B.Campbell, R.Tellgmann, H.Schwarz, T.Weiske, S.Pitter. Angew. Chem., Int. Ed. Engl., 32, 584 (1993)
- P.J.Krusic, E.Wasserman, P.N.Keizer, J.P.Morton, K.F.Preston. Science, 254, 1183 (1991)
- M.Gerst, H.-D.Beckhaus, C.Rüchardt, E.E.B.Campbell, R.Tellgmann. *Tetrahedron Lett.*, 34, 7729 (1993)
- R.Malhotra, D.F.McMillen, D.S.Tse, D.C.Lorents, R.S.Ruoff, D.M.Keegan. *Energ. Fuel*, 7, 685 (1993)
- S.Wu, L.Shu, K.Fan. In Abstracts Book of International Conference on Science and Technology of Synthetic Metals. Seoul, 1994. P.417
- A.P.Moravsky, P.V.Fursikov, L.M.Kachapina, A.V.Khramov, N.V.Kiryakov. In *Fullerenes. Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials. Vol.2.* (Eds K.M.Kadish, R.S.Ruoff). The Electrochemical Soc., Pennington, NJ, 1995. P.156
- H.-J.Wu, A.S.Hirschon, R.Malhotra, R.B.Wilson. In *Fullerenes*. Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials. Vol.1. (Eds K.M.Kadish, R.S.Ruoff). The Electrochemical Soc., Pennington, NJ, 1994. P.758
- A.S.Hirschon, H.-J.Wu, R.B.Wilson, R.Malhotra. J. Phys. Chem., 99, 17483 (1995)
- С.Д.Кущ, А.П.Моравский, В.Е.Мурадян, П.В.Фурсиков. Нефтехимия, 37, 116 (1997)
- H.Werner, M.Wohlers, D.Herein, D.Bublak, J.Bloeckert, R.Schlögl, A.Reller. *Fullerene Sci. Technol.*, 1, 199 (1993)
- M.S.Meier, P.S.Corbin, V.K.Vance, M.Clayton, M.Mollman, M.Poplawska. *Tetrahedron Lett.*, 5789 (1994)
- A.D.Darwish, A.K.Abdul-Sada, G.J.Langley, H.W.Kroto, R.Taylor, D.R.M.Walton. J. Chem. Soc., Perkin Trans. 2, 2359 (1995)
- G.P.Miller, J.M.Millar, B.Lang, S.Uldrich, J.E.Johston. J. Chem. Soc., Chem. Commun., 897 (1993)
- 58. R.Taylor. J. Chem. Soc. Perkin Trans. 2, 2497 (1994)
- C.Jin, R.Hettich, R.Compton, D.Joyce, J.Blencoe, T.Burch. J. Phys. Chem., 98, 4215 (1994)
- R.A.Assink, J.E.Schirber, D.A.Loy, B.Morosin, G.A.Carlson. J. Mater. Res., 7, 2136 (1992)
- M.I.Attalla, A.M.Vassallo, B.N.Tattam, J.V.Hanna. J. Phys. Chem., 97, 6329 (1993)
- 62. M.Bühl, W.Thiel, U.Schneider. J. Am. Chem.Soc., 117, 4623 (1995)
- K.-L.Han, R.-C. Lu, H.Lin, E.B.Gallogy, W.M.Jackson. Chem. Phys. Lett., 243, 29 (1995)
- 64. J.A.Howard. Chem. Phys. Lett., 203, (1993) 540
- P.A.Brühwiler, S.Andersson, M.Dippel, N.Martensson,
 P.A.Demirev, Bo U.R.Sundqvist. Chem. Phys. Lett., 214, 45 (1993)
- K. Beardmore, R.Smith, A.Richter, B.Mertesacker. J. Phys. Condens. Matter, 6, 7351 (1994)
- S.Petrie, G.Javahery, J.Wang, D.K.Bohme. J. Am. Chem. Soc., 114, 6268 (1992)
- F.D.Weiss, J.L.Elkind, S.C.O Brien, R.F.Curl, R.E.Smalley. J. Am. Chem. Soc., 110, 4464 (1988)
- T.Weiske, J.Hrusak, D.K.Bohme, H.Schwarz. *Helv. Chim. Acta*, 75, 79 (1992)
- T.J.Butenhoff, E.A.Rohlfing. In *The 24th International Symposium* on Combustion. The Combustion Institute, Pittsburgh, 1992. P.947
- 71. A.Palnichenko, S.Tanuma. J. Mater. Res., 10, 64 (1995)

- Н.Г.Спицына, Г.Н.Бойко, Ю.П.Кудрявцев, В.Г.Бабаев, М.Б.Гусева, С.Е.Евсюков. Изв. АН. Сер. хим., 1387 (1995)
- R.J.Lagow, J.J.Kampa, H.-C.Wei, S.L.Battie, J.W.Genge, D.A.Laude, C.J.Harper, R.Bau, R.C.Stevens, J.F.Haw, E.Munson. In *Fullerenes'96. (Abstracts Book)*. Elsevier Sci., Oxford, 1996. P.18
- 74. A.Goeres, E.Sedlmayr. Fullerene Sci. Technol., 1, 563 (1993)
- X.K.Wang, X.W.Lin, V.P.Dravid, J.B.Ketterson, R.P.H.Chana. *Appl. Phys. Lett.*, 66, 2430 (1995)
- X.K.Wang, R.O.Loutfy, J.C.Withers, J.Jiao, S.Seraphin. In Material Research Society Fall Meeting. (Abstacts of Reports). MRS, Pittsburgh, PA, 1995. P.169
- X.Zhao, M.Ohkohchi, M.Wang, Y.Ando. In *Fullerenes'96*. (*Abstracts Book*). Elsevier Sci., Oxford, 1996. P.107
- 78. J.R.Morton, K.F.Preston, P.J.Krusic, L.B.Knight, Jr. Chem. Phys. Lett., 204, 481 (1994)
- Н.Ф.Гольдшлегер, Г.Н.Бойко, А.С.Лобач, А.С.Астахова, Н.Н.Денисов, В.А.Надточенко, О.С.Рошупкина, Ю.М.Шульга. Изв. АН. Сер. хим., 2531 (1996)
- K.Shigematsu, K.Abe, M.Mitani, K.Tanaka. Fullerene Sci. Technol., 1, 309 (1993)
- K.Shigematsu, K.Abe, M.Mitani, K.Tanaka. Chem. Express, 8, 483 (1993)
- 82. K.Shigematsu, K.Abe. Chem. Express, 7, 905 (1992)
- K.Shigematsu, K.Abe, M.Mitani, K.Tanaka. Chem. Express, 8, 37 (1993)
- K.Shigematsu, K.Abe, M.Mitani, K.Tanaka. Chem. Express, 7, 957 (1992)
- K.Shigematsu, K.Abe, M.Mitani, M.Nakao, K.Tanaka. Chem. Express, 8, 669 (1993)
- H.Nagashima, A.Nakaoka, Y.Saito, M.Kato, T.Kawanishi, K.Itoh. J. Chem. Soc., Chem. Commun., 377 (1992)
- 87. L.Becker, T.P.Evans, J.L.Bada. J. Org. Chem., 58, 7630 (1993)
- А.С.Лобач, Б.П.Тарасов, Ю.М.Шульга, А.А.Перов, А.Н.Степанов. Изв. АН. Сер. хим., 483 (1996)
- B.Morosin, C.Henderson, J.E.Schirber. Appl. Phys. A, Solid Surf., 59, 179 (1994)
- R.E.Douthwaite, M.L.H.Green, A.H.H.Stephes, J.F.C.Turner. J. Chem. Soc., Chem. Commun., 1522 (1993)
- А.В.Усатов, Е.В.Воронцов, Л.Е.Виноградова, Ю.Н.Новиков. Изв. АН. Сер. хим., 1661 (1994)
- A.V.Usatov, A.L.Blumenfeld, E.V.Vorontsov, L.E.Vinogradova, Yu.N.Novikov. *Mendeleev Commun.*, 229 (1993)
- A.L.Balch, J.W.Lee, B.C.Noll, M.M.Olmstead. *Inorg. Chem.*, 32, 3577 (1993)
- 94. S.Schreiner, T.N.Gallaher, H.K.Parsons. *Inorg. Chem.*, **33**, 3021 (1994)
- 95. Пат. 27801 Япония (1994)
- 96. A.Hirsch. Chemie in unserer Zeit, 28, 79 (1994)
- Б.А.Колачев, А.А.Шалин, А.А.Ильин. В кн. Сплавы накопители водорода. Металлургия, Москва, 1995. С.384
- 98. Б.П.Тарасов, С.П.Шилкин. Журн. прикл. химии, 68, 21 (1995)
- 99. Б.П.Тарасов, В.Н.Фокин, А.П.Моравский, Ю.М.Шульга. *Изв. АН. Сер. хим.*, 1867 (1996)
- 100. Б.П.Тарасов, В.Н.Фокин, А.П.Моравский, Ю.М.Шульга. Журн. неорг. химии, **42**, 920 (1997)
- 101. Б.П.Тарасов, В.Н.Фокин, А.П.Моравский, Ю.М.Шульга. Изв. АН. Сер. хим. (1997) (в печати)
- 102. R.Taylor. J. Chem. Soc., Perkin Trans. 2, 1667 (1992)
- 103. S.J.Austin, R.C.Batten, P.W.Fowler, D.B.Redmond, R.Taylor. J. Chem. Soc., Perkin Trans. 2, 1383 (1993)
- 104. A.Rathna, J.Chandrasekhar. Chem. Phys. Lett., 206, 217 (1993)
- 105. B.I.Dunlap, D.W.Brenner, G.W.Schriver. J. Phys. Chem., 98, 1756 (1994)
- 106. L.D.Book, G.E.Scuseria. J. Phys. Chem., 98, 4283 (1994)
- 107. A.Govindaraj. Curr. Sci., 65, 868 (1993)
- 108. M.Saunders. Science, 253, 330 (1991)
- 109. S.-H.Wang. S.A.Jansen. J. Phys. Chem., 99, 8556 (1995)
- 110. A.I.Kolesnikov, V.E.Antonov, I.O.Bashkin, G.Grosse, A.P.Moravsky, A.Yu.Muzychka, E.G.Ponyatovsky, F.E.Wagner. J. Phys., Condens. Matter, (1997) (in the press)
- 111. R.O.Loutfy, private communication
- L.E.Hall, D.R.McKenzie, M.I.Attalla, A.M.Vassallo, R.L.Davis, J.B.Dunlop, D.J.H.Cockayne. J. Phys. Chem., 97, 5741 (1993)

- 113. I.O.Bashkin, V.I.Rashchupkin, A.F.Gurov, A.P.Moravsky, O.G.Rybchenko, N.P.Kobelev, Ya.M.Soifer. J. Phys., Condens. Matter, 6, 7491 (1994)
- P.J.R.Honeybone, R.J.Newport, W.S.Howells, J.Tomkinson, S.B.Bennington, R.J.Revell. *Chem. Phys. Lett.*, 180, 145 (1991)
- W.S.Howells, P.J.R.Honeybone, R.J.Newport, S.M.Bennington, P.J.Revell. *Physica B*, 180/181, 787 (1992)
- 116. B.I.Dunlap, D.W.Brenner, J.W.Mintmire, R.C.Mowrey, C.T.White. J. Phys. Chem., 95, 5763 (1991)
- 117. B.W.Clare, D.L.Kepert. J. Mol. Structure (Theochem.), 315, 71 (1994)
- 118. А.А.Полякова, И.А.Ревельский, М.И.Токарев, Л.О.Коган, В.Л.Тальрозе. *Масс-спектральный анализ смесей с применением* ионно-молекулярных реакций. Химия, Москва, 1989
- 119. C.N.R.Rao, S.N.Bhat, P.C.Dwivedi. Appl. Spec. Rev., 5, 1 (1971)
- R.V.Bensasson, E.Bienvenue, J.-M.Janot, S.Leach, P.Seta, D.I.Schuster, S.R.Wilson, H.Zhao. *Chem. Phys. Lett.*, 245, 566 (1995)
- 121. M.E.Niyazymbetov, D.H.Evans, S.A.Lerke, P.A.Cahill. C.C.Henderson. J. Phys. Chem., 98, 13093 (1994)
- 122. T.F.Guarr, M.S.Meier, V.K.Vance, M.Clayton. J. Am. Chem. Soc., 115, 9862 (1993)
- P.Boulas, F.D Souza, C.C.Henderson, P.A.Cahill, M.T.Jones, K.M.Kadish. J. Phys. Chem., 97, 13435 (1993)
- 124. P.J.Fagan, P.J.Krusic, D.H.Evans, S.A.Lerke, E.Johnston. J. Am. Chem. Soc., 114, 9697 (1992)
- V.Ohlendorf, A.Willnow, H.Hungerbuhler, D.M.Guldi, K.-D.Asmus. J. Chem. Soc., Chem. Commun., 759 (1995)
- 126. D.E.Cliffel, A.J.Bard. J. Phys. Chem., 98, 8140 (1994)
- 127. G.Van Lier, K.Choho, W.Langenaeker, G.Van De Woude, P.Geerlings. In *Fullerenes'96. (Abstracts Book)*. Elsevier Sci., Oxford, 1996. P.139
- 128. Ю.М.Шульга, В.И.Рубцов, А.С.Лобач, Н.Ф.Гольдшлегер. *Письма в ЖЭТФ*, **21**, 75 (1995)
- 129. F.Wudl, A.Hirsch, K.C.Khemani, T.Suzuki, P.-M.Allemand, A.Koch, H.Eckert, G.Srdanov, H.M.Webb. In *Fullerenes. ACS Symp. Ser.* 481. (Eds G.S.Hammond, V.J.Kuck). American Chemical Society, Washington, DC, 1992. P.161

- 130. W.Beck, H.-J.Bentele, S.Hüffer. Chem. Ber., 128, 1059 (1995)
- 131. A.Hirsch, T.Grösser, A.Skiebe, A.Soi. Chem. Ber., 126, 1061 (1993)
- 132. J.Chen, R.-F.Cai, Z.-E.Huang, H.-H.Wu, S.-K.Jiang, Q.-F.Shao. J. Chem. Soc., Chem. Commun., 1553 (1995)
- 133. A.D.Darwish, A.G.Avent, R.Taylor, D.R.M.Walton. J. Chem. Soc., Perkin Trans. 2, 2051 (1996)
- A.S.Lobach, A.N.Shchegolikhin. In *Abstracts Book of International* Conference on Science and Technology of Synthetic Metals. Snowbird, UT, 1996. P.459
- 135. S.Serizawa, J.Gabrielova, T.Fujimoto, T.Shido, M.Ichikaw. J. Chem. Soc., Chem. Commun., 799 (1994)
- 136. D.T.Bohme. Chem. Rev., 92, 1487 (1992)
- 137. R.Nozu, O.Matsumoto. J. Electrochem. Soc., 143, 1919 (1996)
- 138. A.D.Darwish, H.W.Kroto, R.Taylor, D.R.M.Walton. J. Chem.
- Soc., Perkin Trans. 2, 1415 (1996) 139. K.-F.Liou, C.-H.Cheng. J. Chem. Soc., Chem.Commun., 1423 (1996)
- 140. B.W.Clare, D.L.Kepert. J. Mol. Structure (Theochem.), **363**, 179 (1996)
- 141. B.W.Clare, D.L.Kepert. In Fullerene'96. (Abstracts Book). Elsevier Sci., Oxford, 1996. P.30
- 142. A.V.Usatov, K.N.Kudin, E.V.Vorontsov, L.E.Vinogradova, Yu.N.Novikov. J. Organomet. Chem., 522, 147 (1996)
- 143. Н.Ф.Гольдшлегер, Н.Н.Денисов, В.А.Надточенко, М.Г.Каплунов, А.В.Куликов. Жури. общ. химии, (1997) (в печати)
- 144. A.D.Darwish, A.K.Abdul-Sada, G.J.Langley, H.W.Kroto, R.Taylor, D.R.M.Walton. Synth. Met., 77, 303 (1996)
- 145. P.W.Fowler, J.P.B.Sandall, S.J.Austin, D.E.Manolopoulos, P.D.M.Lawrenson, J.M.Smallwood. Synth. Met., 77, 97 (1996)
- 146. P.W.Fowler, J.P.B.Sandall, S.J.Austin. Fullerene Sci. Techol., 4, 369 (1996)
- 147. R.V.Bensasson, T.J.Hill, E.J.Land, S.Leach, D.J.McGarvey, T.G.Truscott, J.Ebenhoch, M.Gerst, C.Rüchardt. *Chem. Phys.*, 215, 111 (1997)
- 148. A.S.Lobach, Yu.M.Shul'ga, A.I.Rebrov. In Abstracts Book of 191st Meeting of the Electrochemical Society. Montreal, Canada. The Electrochemical Soc., Pennington, NJ, 1997

FULLERENE HYDRIDES: PREPARATION, PROPERTIES, AND STRUCTURE

N.F.Goldshleger, A.P.Moravskii

Institute of Chemical Physics in Chernogolovka, Russian Academy of Sciences 142432 Chernogolovka, Moscow Region, Russian Federation, Fax +7(096)515-3588

Methods for the synthesis of exohedral fullerene hydrides including reduction of fullerene by hydrocarbons, catalytic hydrogenation of fullerenes, etc. are surveyed. Much attention is paid to the state of hydrogen in solid fullerene hydrides, their structure and reactivity. Bibliography — 148 references.

Received 25th September 1996